低强度脉冲式超声波治疗心血管疾病的研究进展

B站影视 2025-01-24 00:06 2

摘要:引用本文:贺春伟, 彭洁, 沈琳. 低强度脉冲式超声波治疗心血管疾病的研究进展[J]. 中国心血管杂志, 2024, 29(6): 529-534. DOI: 10.3969/j.issn.1007-5410.2024.06.006.

中国心血管杂志

2025

Chinese Journal of Cardiovascular Medicine

本刊为北大《中文核心期刊要目总览》2023年版入编期刊、科技期刊世界影响力指数(WJCI)报告2024收录期刊、中国科技核心期刊、武大(RCCSE)核心期刊,欢迎来稿!

photo by tare

低强度脉冲式超声波治疗心血管疾病的

研究进展

Research progress of low-intensity pulsed ultrasound in the treatment of cardiovascular diseases

贺春伟 彭洁 沈琳

作者单位:250012 济南,山东大学齐鲁医院老年医学科,山东省心血管疾病蛋白质组学重点实验室

通信作者:沈琳,电子信箱:slmm321@126.com

引用本文:贺春伟, 彭洁, 沈琳. 低强度脉冲式超声波治疗心血管疾病的研究进展[J]. 中国心血管杂志, 2024, 29(6): 529-534. DOI: 10.3969/j.issn.1007-5410.2024.06.006.

低强度脉冲式超声波(low-intensity pulsed ultrasound,LIPUS)作为一种新兴的治疗手段,因其非侵入性特点和多种生物学效应备受关注[1]。LIPUS通过发射低强度(2)、脉冲式超声波(0.7~3.0 MHz)传导非创伤性机械力,主要通过机械、空化效应促进血管内皮细胞再生、抑制炎症反应、减轻氧化应激和保护心肌细胞等,在心血管疾病(cardiovascular disease,CVD)的治疗中展现出较好的临床价值和科学潜力[2,3]。在骨科和泌尿外科等领域中,LIPUS已被证实可加速骨折愈合和促进软组织修复,疗效显著[4,5]。随着研究深入,越来越多的证据表明,LIPUS在CVD的康复和再生方面具有巨大潜力。作为一种非侵入性的CVD治疗新策略,LIPUS有望成为CVD康复治疗的重要选择[6]。本文拟对LIPUS在CVD治疗中的作用机制、临床研究进展及其应用前景进行系统综述。

1 LIPUS治疗CVD的作用机制

LIPUS通过其物理作用在较大范围内刺激分子、细胞和组织水平诱导的多种生物效应,包括促进血管生成因子和细胞因子的表达、激活信号转导通路、抑制细胞凋亡和氧化应激、干预基因表达和干细胞分化,从而增加治疗区域的新生血管数量,改善组织缺血状态,并发挥对心脏的保护作用[1,6,7,8,9]。目前,国内外学者在分子、细胞及动物模型层面进行了大量的临床前研究,揭示了LIPUS在CVD治疗中的关键机制。

1.1 促进血管内皮细胞新生、诱导血管新生

血管生成是心血管修复的关键生物过程,涉及内皮细胞、血管平滑肌细胞、周细胞及免疫细胞等多种细胞类型之间复杂的信号转导网络,以形成新血管。其始于内皮细胞激活,随后经历细胞增殖、迁移和管腔形成。缺血、缺氧和酸性环境可诱导血管生成因子,如血管内皮生长因子(vascular endothelial growth factor,VEGF)、胎盘生长因子、单核细胞趋化蛋白1和基质细胞衍生因子1α等。机械刺激在动脉生成中也至关重要,剪切应力信号及小窝蛋白1(caveolin-1,Cav-1)作为细胞力学传感器的响应机制均在此过程中发挥重要作用,涉及β1整合素和Cav-1磷酸化所激活的细胞外信号调节激酶-1/2(extracellular signal-regulated kinase 1/2,ERK1/2)和磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/Akt)通路[10]。β1整合素和Cav-1是LIPUS治疗中关键的机械传导因子,其mRNA表达水平与VEGF的表达呈正相关[11]。炎症通路通过内皮蛋白激酶A/内皮型一氧化氮合酶(protein kinase A/endothelial nitric oxide synthase,PKA/eNOS)信号通路和一氧化氮(nitric oxide,NO)-环磷酸鸟苷(cyclic guanosine monophosphate,cGMP)激酶级联通路调节新生血管生成。LIPUS通过提升内皮细胞eNOS活性和NO合成来促进血管生成[11]

1.1.1 细胞生物学水平研究

LIPUS可上调VEGF、白细胞介素(interleukin,IL)-8、胎盘生长因子、单核细胞趋化蛋白1和基质细胞衍生因子1α等表达,增强eNOS活性,诱导血管内皮细胞增殖、迁移和发芽,促进血管形成[6,12]。在缺血心肌的冠状动脉内皮细胞中,Cav-1的免疫反应性增强,LIPUS通过Cav-1将机械刺激传递至细胞内信号通路,从而促进VEGF表达[11]。此外,LIPUS还可能增强内皮细胞与造血干细胞/祖细胞、骨髓来源单核细胞和驻留心脏干细胞的相互作用,促进血管生成[13]。LIPUS调节内皮细胞内外Ca2+水平,利用黏着斑通路增强ERK1/2和Akt磷酸化,改变VEGF和eNOS信号通路的基因表达[14]。LIPUS也可提高心肌细胞中VEGF的表达,并通过激活人脐静脉内皮细胞中的YAP/TAZ加速血管生成[11,15]。Li等[16]发现,LIPUS可调控皮质内微电极植入后的小胶质细胞活化,减少血管相关小胶质细胞的数量和血管直径。

1.1.2 动物模型水平研究

在慢性心肌缺血的猪模型中,LIPUS上调缺血心肌组织中的VEGF、eNOS和碱性成纤维细胞生长因子表达,增加毛细血管密度,改善缺血区域的血流量和左心室功能障碍,而对非缺血区域无此效应[6]。eNOS促进血管舒张和生成,碱性成纤维细胞生长因子可促进新血管的形成[6]。研究发现,LIPUS通过促进小鼠心肌中ERK1/2和Akt的磷酸化,促进血管生成,并改善心脏淋巴管功能[11]。在冠状动脉支架置入的猪模型中,LIPUS上调eNOS和VEGF-C/VEGF受体3,改善心脏淋巴管功能,加速巨噬细胞和IL-1β的淋巴转运,减少炎症反应和血管过度收缩[17]。LIPUS可降低健康大鼠的血压和心率,改善心肌灌注[18],缩小急性心肌梗死小鼠梗死面积,修复受损心肌,缓解左心室重构,改善心功能并降低死亡率[11]。此外,LIPUS还能提高血管紧张素Ⅱ(AngⅡ)输注的小鼠心肌中VEGF和Cav-1的表达[5]。Nazer等[19]发现,低强度超声波可诱导大鼠缺血后肢血管生成。LIPUS联合脂肪间充质干细胞源性外泌体可促进血管内皮细胞增殖、迁移和成管[20],并在脑血管疾病的动物模型中表现出促进神经血管生成、减轻脑水肿并加速神经功能恢复的效果

1.2 抑制炎症反应

CVD常伴炎症反应,加剧心脏组织损伤。研究显示,LIPUS可减少促炎细胞因子表达,限制炎症细胞浸润,调节炎症细胞表型,增加血流量,激活线粒体生物发生和抗氧化应激,加速组织修复,有助于组织康复

1.2.1 细胞生物学水平研究

LIPUS在炎症早期促进白细胞浸润,加速伤口清洁[24];在炎症后期和慢性炎症中,则减少白细胞浸润,防止进一步组织损伤[26]。此外,LIPUS对白细胞的调节作用已在其部分组成细胞类型中得到验证。中性粒细胞在心肌缺血性损伤后数小时内便浸润在心肌中,中性粒细胞与淋巴细胞的比值是急性冠脉综合征患者死亡的强预测因子,且过度活化可产生大量活性氧,加剧组织损伤[27]。LIPUS可减少中性粒细胞浸润,降低S100A8/A9表达,减轻炎症反应,改善心脏功能[28,29]。巨噬细胞分为促炎型(M1)和抗炎型(M2)两类。LIPUS可促进M1向M2表型转化,减少巨噬细胞在心脏中的浸润,抑制脂多糖诱导的小鼠巨噬细胞系RAW264.7增殖[30]。

淋巴细胞对超声机械应力敏感,LIPUS通过调节细胞因子机械通道减少心肌炎中的淋巴细胞浸润,尤其减少CD4+T细胞的浸润,改善Th17/Treg细胞比例,抑制心肌炎症[31,32]。

此外,LIPUS增加动脉粥样硬化树突状细胞中miRNA-16和miRNA-21含量,抑制核因子κB(nuclear factor κB,NF-κB)信号通路的活性,减轻肿瘤坏死因子α(tumor necROSis factor-α,TNF-α)诱导的内皮炎症[33],还抑制心脏成纤维细胞中的血管紧张素转换酶、氧化应激和核苷酸结合寡聚化结构域样受体蛋白(NOD-like receptor protein 3,NLRP3)炎症小体的激活,减少IL-1β、IL-18和IL-6的表达[8]。

1.2.2 动物模型水平研究

在动物模型中,研究证实了LIPUS对炎症反应的抑制作用。Prabhu等[34]发现,在心肌梗死急性期中,调节中性粒细胞功能有助于心脏恢复;Barron等[35]研究显示,中性粒细胞的峰值水平与左心室重构、功能丧失、动脉瘤形成和死亡率相关。在阿霉素诱导的心肌炎小鼠模型中,LIPUS下调S100A8/A9基因表达,减少中性粒细胞浸润,改善心肌纤维化和氧化应激,同时抑制心脏组织中巨噬细胞浸润和IL-1β表达[17]。LIPUS抑制巨噬细胞分泌炎症因子(如CCL-3、CCL-4、CCL-5、IL-12和IL-15),减弱CCR2++MHCⅡ高表达巨噬细胞的比例[36]。此外,LIPUS在心肌炎小鼠中表现出免疫调节功能,减少CD4+T细胞浸润、降低Th17细胞比例、增加Treg细胞数量,从而优化心肌免疫微环境并促进心肌恢复[36,37]。除抗炎细胞外,LIPUS还通过调控炎症介质维持免疫稳态和炎症反应。研究发现,LIPUS显著降低心脏中促炎因子(如IL-1、IL-6、IL-1β、干扰素γ、细胞间黏附分子1、单核细胞趋化蛋白1和TNF-α)的表达,并增加抗炎细胞因子水平,如转化生长因子β1(transforming growth factor,TGF-β1)和IL-10[40,41]。此外,LIPUS在阿霉素诱导的心脏毒性中可抑制中性粒细胞趋化性,包括S100A8、S100A9、Ccl2、Ccl22和Cxcl2[29]虽然LIPUS的抗炎机制尚不清楚,但可能涉及多个信号通路,包括VEGF-eNOS、p38丝裂原活化的蛋白激酶(mitogen-activated protein kinase,MAPK)、整合素/黏着斑激酶(FAK)/PI3K/Akt和HIPPO通路等。LIPUS通过上调VEGF和eNOS的表达,促进NO生成与释放,激活可溶性cGMP的生成,并通过增加IκB表达抑制NF-κB介导的促炎反应[38,39]。LIPUS通过Cav-1调节整合素相关炎症信号,影响MAPK信号通路[5]。另外,LIPUS在糖尿病心脏病中降低血管紧张素转换酶、AngⅡ、NADPH氧化酶4(NADPH oxidase 4,NOX4)相关的氧化应激及NLRP3炎症小体的激活,进一步减轻组织损伤[8,42]。此外,LIPUS通过调节HIPPO通路中的Mst1-TAZ轴,影响FOXp3和RORγt的相互作用,调节Treg和Th17细胞的分化,减轻心肌炎症损伤[37]。LIPUS还可促进乙酰胆碱释放,激活胆碱能抗炎通路,调节CD4++巨噬细胞功能,抑制心脏浸润,减轻心肌炎相关急性心肌损伤[36]。此外,LIPUS可能通过脾神经发挥免疫调节作用[36]。LIPUS还通过自噬信号与PI3K/Akt、MAPK、Toll样受体和NF-κB信号通路等其他炎症通路之间存在关联。1.3 减轻心肌细胞线粒体损伤和氧化应激、抑制心肌细胞凋亡、保护心肌细胞氧化应激与炎症反应在CVD,尤其是心肌缺血/再灌注损伤中形成恶性循环并起关键作用。在再灌注阶段,活性氧(reactive oxygen species,ROS)信号传导的过度激活进一步加剧细胞损伤[42]。LIPUS通过减弱氧化应激,恢复线粒体功能,减轻心肌缺血/再灌注损伤[8]。LIPUS可激活RhoA/肌球蛋白Ⅱ及肌球蛋白Ⅱ/YAP/Drp1/KIF5B马达蛋白轴,调节细胞骨架张力与有丝分裂,促进细胞迁移和恢复[43]。在氧化应激条件下,ROS通过上调凋亡信号调节激酶1(apoptosis signal regulating kinases 1,ASK1)和c-JunN端激酶(c-Jun N-Terminal Kinase,JNK)通路以及TNF-α介导的凋亡机制导致细胞凋亡[44,45,46]。而LIPUS通过抑制该通路,降低ROS、NOX4、缺氧诱导因子1α、丙二醛、超氧化物歧化酶、过氧化氢酶、TNF-α和ASK1/JNK通路等因子,保护心脏免受损伤[7]。研究表明,LIPUS通过激活PI3K-Akt和ERK1/2信号通路,提高心肌细胞中B淋巴细胞瘤-2(Bcl-2)基因水平,降低Bax和Caspase-3水平,促进细胞增殖并抑制凋亡[47]。LIPUS还能增加细胞存活率,延缓细胞凋亡,提高内皮细胞活力,防止应激诱导的内皮-间质转化[43,48]。此外,LIPUS具有心肌保护作用。LIPUS直接作用于心肌细胞,通过机械和生物化学信号,提高人心肌细胞中VEGF的表达[11]。而在动物实验中,LIPUS改善了心脏中血管母细胞的功能特性,增加其延展性和运动性[49]。心脏重构以心脏肥大和心肌纤维化为特征,与机械应激和神经体液刺激密切相关[50]。心脏纤维化是CVD常见的病理变化,可导致心脏僵硬和功能下降。LIPUS通过调节胶原蛋白的合成和降解,减少心脏纤维化,改善心脏重构,从而有助于保持心脏组织的弹性和功能。

1.4.1 分子细胞学水平研究

Cav-1在人成纤维细胞的生理和病理功能中扮演关键角色,尤其在左心室重构中介导NOS和G蛋白亚基等信号分子[11]。研究显示,LIPUS可激活心脏成纤维细胞中Cav-1并促进蛋白质合成[5,51]。AngⅡ通过氧化应激、细胞凋亡、炎症反应及TGF-β介导的细胞外基质的沉积诱导心脏重构[52,53]2强度的LIPUS能显著降低心脏成纤维细胞中TGF-β和胶原蛋白Ⅰ的mRNA和蛋白质的表达水平,抑制AngⅡ诱导的心肌细胞肥大以及高糖诱导的心脏纤维化。此外,LIPUS通过抑制心脏成纤维细胞向肌成纤维细胞的分化以及胎儿基因的激活,减少心脏纤维化[5]。在Sugen/缺氧(Su/Hx)模型和横主动脉收缩模型中,LIPUS通过改善肌浆网Ca2+相关蛋白的表达[54]及抑制NOX4和NLRP3炎症小体,减轻心脏纤维化并改善心肌功能[55,56]。LIPUS通过增加胶原分泌和α-平滑肌肌动蛋白表达,增强机械稳定性,防止细胞外基质的过度沉积和心脏重构[8,56,57,58]

1.4.2 动物模型水平研究

在不同动物模型中的实验表明,LIPUS具有多种作用。在AngⅡ注射的小鼠模型中,LIPUS通过下调TGF-β和胶原蛋白Ⅰ的表达,并通过Cav-1依赖途径减少TNF-α、IL-1β和IL-6的表达,有效缓解心脏肥大和纤维化[5]。在缺血和再灌注模型中,LIPUS减少左心室重构,改善左心射血功能,抑制急性心肌梗死后的纤维化[11]。在慢性心肌缺血的猪模型中,LIPUS通过增强Cav-1依赖的VEGF表达和eNOS磷酸化,改善左心室重构和降低死亡率[5]。在肺动脉高压小鼠模型中,LIPUS通过激活eNOS-NO-cGMP-PKG信号通路,减轻心肌细胞肥大和间质纤维化,改善右心室功能[54]。在慢性左心室压力超负荷小鼠模型中,LIPUS通过降低胶原Ⅲ减轻血管周围纤维化,改善心脏的收缩功能[40]。此外,LIPUS还通过抑制NOX4相关的氧化应激和NLRP3激活,改善糖尿病心脏纤维化,增强eNOS-NO-cGMP-PKG通路,调节Ca2+水平,改善心脏舒张功能,抑制心肌肥大和间质纤维化[8,59]。LIPUS还可预防缺氧引起的心脏纤维化,通过P2X7/NLRP3信号传导抑制交感神经过度激活和促炎因子释放,减轻心力衰竭引起的心脏肥大和纤维化,降低心力衰竭诱导的室性心律失常风险[56]。总之,LIPUS在抑制心脏重构方面具有多重作用,可改善心脏功能,延缓CVD进展。

2 LIPUS治疗CVD的有效性和安全性临床研究

2.1 LIPUS治疗CVD的有效性临床研究

尽管LIPUS在CVD治疗中仍处于探索阶段,但已有研究表明其在改善心血管功能、抗炎调脂、增强溶栓效果、改善脑缺血及降低致残率等方面存在显著潜力。在健康志愿者中,1MHz连续性治疗超声和脉冲式治疗超声可增加微血管血流量及前臂峰值血管反应性,这与内皮功能改善和NO生物利用度增加有关[60,61]。在治疗慢性静脉伤口方面,LIPUS在炎症和增殖阶段(包括血管生成和胶原生成)的疗效优于传统药物治疗[62]。研究发现,LIPUS可改善冠心病心绞痛患者的症状、降低血脂和炎症指标以及提高心功[63]。此外,LIPUS可改善冠心病患者的心率变异性指标及焦虑状态[64],并能显著减少难治性心绞痛患者对硝酸甘油的需求[65]。对于糖尿病患者,研究发现1 MHz治疗性超声脉冲和连续波形均可改善2型糖尿病患者的动脉内皮功能[66]。在糖尿病足患者中,LIPUS不仅能促进糖尿病足溃疡伤口愈合,还能提高踝肱指数、趾肱指数、经皮氧分压水平和双下肢血流流速,同时增加外周血淋巴细胞的增殖活性[67]。另外,LIPUS还显示出提高心脏副交感神经活性,降低高血压患者血管硬度、血压、脉率和脉压的能力[68,69,70]。LIPUS还可改善间歇性跛行受试者的行走能力[71]。在血栓溶解方面,LIPUS结合微泡或作为rt-PA辅助剂,可提升溶栓率并缩小动脉粥样硬化斑块,改善血流动力学和血液流变学[72,73]。此外,在脑梗死治疗方面,LIPUS可改善缺血状态、降低致残率,并减少脑卒中后并发症[74,75,76]。同时,LIPUS显示出对阿尔茨海默病认知障碍的抑制作用[77]。总之,LIPUS在CVD治疗中展示其临床应用的潜力,有望成为改善心脏功能和CVD康复治疗的重要手段。

2.2 LIPUS治疗CVD的安全性临床研究

尽管大多数研究仍处于早期阶段,样本量较小且缺乏长期随访数据,但LIPUS治疗在CVD的多项研究中均表现出良好的安全性和耐受性。Mohamad Yusoff等[78]研究发现,在对血栓闭塞性脉管炎患者进行为期24周的LIPUS治疗后,疼痛强度显著降低,皮肤灌注压力增加,并未观察到严重不良反应,提示LIPUS是一种安全有效的治疗选择,有望避免重大截肢手术。Shindo等[65]发现,LIPUS可降低难治性心绞痛患者每周的硝酸甘油使用量,且未出现严重不良反应。汤明明等[67]的研究表明,在糖尿病高危足患者中,LIPUS治疗未引发局部皮疹或水肿等不良事件,展现出良好的安全性和临床应用潜力。LIPUS在阿尔茨海默病患者的治疗中也未发现不良反应。总之,LIPUS是CVD治疗中安全性较高的无创治疗方法,可作为CVD治疗的康复方向。

3 LIPUS治疗CVD的应用前景

近年来,非侵入性治疗手段LIPUS逐渐受到关注,被视为在CVD治疗中具有潜力的新方向。随着我国老龄化进程的加速,老年人口数量和比例持续上升,CVD治疗和康复面临巨大挑战。尽管LIPUS在CVD治疗中的研究仍处于初期阶段,其独特的生物学效应和非侵入性特点使其成为潜力巨大的康复治疗手段。未来的研究应重点关注以下几个方面:(1)确定LIPUS的生物学机制;(2)优化治疗参数;(3)进行多中心大规模临床试验;(4)探索与传统药物治疗、介入手术等方法的联合应用;(5)实现个体化康复治疗;(6)推动技术和设备的发展,包括研发便携式设备和引入实时监控技术。随着研究的不断深入,LIPUS有望在CVD的康复治疗中带来新的突破,提升患者的预后和生活质量。

参考文献

[1] Jiang X, Savchenko O, Li Y, et al. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications[J]. IEEE Trans Biomed Eng, 2019, 66(10): 2704-2718.

[2] Xin Z, Lin G, Lei H, et al. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology[J]. Transl Androl Urol, 2016, 5(2): 255-266.

[3] Palanisamy P, Alam M, Li S, et al. Low-Intensity Pulsed Ultrasound Stimulation for Bone Fractures Healing: A Review[J]. J Ultrasound Med, 2022, 41(3): 547-563.

[4] Li Z, Ye K, Yin Y, et al. Low-intensity pulsed ultrasound ameliorates erectile dysfunction induced by bilateral cavernous nerve injury through enhancing Schwann cell-mediated cavernous nerve regenation[J]. Andrology, 2023, 11(6): 1188-1202.

[5] Zheng C, Wu SM, Lian H, et al. Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways[J]. J Cell Mol Med, 2019, 23(3): 1963-1975.

[6] Zhao K, Zhang J, Xu T, et al. Low-intensity pulsed ultrasound ameliorates angiotensin II-induced cardiac fibrosis by alleviating inflammation via a caveolin-1-dependent pathway[J]. J Zhejiang Univ Sci B, 2021, 22(10): 818-838.

[7] Cao Q, Liu L, Hu Y, et al. Low-intensity pulsed ultrasound of different intensities differently affects myocardial ischemia/reperfusion injury by modulating cardiac oxidative stress and inflammatory reaction[J]. Front Immunol, 2023, 14: 1248056.

[8] Weng L, Li L, Zhao K, et al. Non-Invasive Local Acoustic Therapy Ameliorates Diabetic Heart Fibrosis by Suppressing ACE-Mediated Oxidative Stress and Inflammation in Cardiac Fibroblasts[J]. Cardiovasc Drugs Ther, 2022, 36(3): 413-424.

[9] He YF, Wang XL, Deng SP, et al. Latest progress in low-intensity pulsed ultrasound for studying exosomes derived from stem/progenitor cells[J]. Front Endocrinol (Lausanne), 2023, 14: 1286900.

[10] Gagescu R. Life without caveolae[J]. Nat Rev Mol Cell Biol, 2001, 2: 788.

[11] Shindo T, Ito K, Ogata T, et al. Low-Intensity Pulsed Ultrasound Enhances Angiogenesis and Ameliorates Left Ventricular Dysfunction in a Mouse Model of Acute Myocardial Infarction[J]. Arterioscler Thromb Vasc Biol, 2016, 36(6): 1220-1229.

[12] Toyama Y, Sasaki K, Tachibana K, et al. Ultrasound stimulation restores impaired neovascularization-related capacities of human circulating angiogenic cells[J]. Cardio vasc Res, 2012, 95(4): 448-459.

[13] Leri A, Kajstura J, Anversa P. Role of Cardiac Stem Cells in Cardiac Pathophysiology: A Paradigm Shift in Human Myocardial Biology[J]. Circ Res, 2011, 109(8): 9419-9461.

[14] Hassan MA, Campbell P, Kondo T. The role of Ca(2+) in ultrasound-elicited bioeffects: progress, perspectives and prospects[J]. Drug Discov Today, 2010, 15(21-22): 892-906.

[15] Xu XM, Xu TM, Wei YB, et al. Low-Intensity Pulsed Ultrasound Treatment Accelerates Angiogenesis by Activating YAP/TAZ in Human Umbilical Vein Endothelial Cells[J]. Ultrasound Med Biol, 2018, 44(12): 2655-2661.

[16] Li F, Gallego J, Tirko NN, et al. Low-intensity pulsed ultrasound stimulation(LIPUS)modulates microglial activation following intracortical microelectrode implantation[J]. Nat Commun, 2024, 15(1): 5512.

[17] Watanabe T, Matsumoto Y, Nishimiya K, et al. Low-intensity pulsed ultrasound therapy suppresses coronary adventitial inflammatory changes and hyperconstricting responses after coronary stent implantation in pigs in vivo[J]. PLoS One, 2021, 16(9): e0257175.

[18] Gonçalves WLS, Rodrigues AN, Chaves R, et al. Hypotension and Bradycardia Produced by Transthoracic Application of Low-Intensity Ultrasound Therapy in Hearts of Healthy Rats-A Preclinical Study[J]. Braz J Cardiovasc Surg, 2020, 5(5): 824-830.

[19] Nazer B, Ghahghaie F, Kashima R, et al. Therapeutic Ultrasound Promotes Reperfusion and Angiogenesis in a Rat Model of Peripheral Arterial Disease[J]. Circ J, 2015, 79(9): 2043-2049.

[20] 刘珺碧, 蒋日月, 王浩, 等. 低强度脉冲超声联合脂肪间充质干细胞源性外泌体促进内皮细胞血管生成的实验研究[J]. 临床超声医学杂志, 2022, 24(1): 1-5.

[21] Song D, Chen X, Zhou N, et al. Low-intensity pulsed ultrasound triggers a beneficial neuromodulation in dementia mice with chronic cerebral hypoperfusion via activation of hippocampal Fndc5/irisin signaling[J]. J Transl Med, 2023, 21(1): 139.

[22] Deng LD, Qi L, Suo Q, et al. Transcranial focused ultrasound stimulation reduces vasogenic edema after middle cerebral artery occ lusion in mice[J]. Neural Regen Res, 2022, 17(9): 2058-2063.

[23] Yi H, Wu S, Wang X, et al. Multimodal evaluation of the effects of low-intensity ultrasound on cerebral blood flow after traumatic brain injury in mice[J]. BMC Neurosci, 2024, 25(1): 8.

[24] Xu M, Wang L, Wu S, et al. Review on experimental study and clinical application of low-intensity pulsed ultrasound in inflammation[J]. Quant Imaging Med Surg, 11(1): 443-462.

[25] ter Haar G. Therapeutic applications of ultrasound[J]. Prog Biophys Mol Biol, 2007, 93(1-3): 111-129.

[26] Nagata K, Nakamura T, Fujihara S, et al. Ultrasound Modulates the Inflammatory Response and Promotes Muscle Regeneration in Injured Muscles[J]. Ann Biomed Eng, 2013, 41(6): 1095-1105.

[27] Ma Y, Yabluchanskiy A, Lindsey ML. Neutrophil roles in left ventricular remodeling following myocardial infarction[J]. Fibrogenesis Tissue Repair, 2013, 6(1): 11.

[28] Sreejit G, Abdel-Latif A, Athmanathan B, et al. Neutrophil-Derived S100A8/A9 Amplify Granulopoiesis After Myocardial Infarction[J]. Circulation, 2020, 141(13): 1080-1094.

[29] Zhu H, He M, Wang YL, et al. Low-intensity pulsed ultrasound alle viates doxorubicin-induced cardiotoxicity via inhibition of S100a8/a9-mediated cardiac recruitment of neutrophils[J]. Bioeng Transl Med, 2023, 8(6): e10570.

[30] 尹娟,杨兴,李平,等. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(1): 26-36.

[31] Vdovenko D, Eriksson U. Regulatory Role of CD4+

[32] Xiong X, Yu M, Wang D, et al. Th17/Treg balance is regulated by myeloid-derived suppressorcells in experimental autoimmune myocarditis[J]. Immun Inflamm Dis, 2023, 11(6): e872.

[33] Li X, Li X, Lin J, et al. Exosomes Derived From Low-Intensity Pulsed Ultrasound-Treated Dendritic Cells Suppress Tumor Necrosis Factor-Induced Endothelial Inflammation[J]. J Ultrasound Med, 2019, 38(8): 2081-2091.

[34] Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis[J]. Circ Res, 2016, 119(1): 91-112.

[35] Barron HV, Harr SD, Radford MJ, et al. The association between white blood cell count and acute myocardial infarction mortalit y in patients > or =65 years of age: findings from the cooperative cardiovascular project[J]. J Am Coll Cardiol, 2001, 38(6): 1654-1661.

[36] Liu T, Fu Y N, Shi J, et al. Noninvasive ultrasound stimulation to treat myocarditis through splenic neuro-immune regulation[J]. J Neuroinflammation, 2023, 20(1): 94.

[37] Fu S, Guo Z, Xu X, et al. Protective effect of low-intensity pulsed ultrasound on immune checkpoint inhibitor-related myocarditis via fine-tuning CD4+T-cell differentiation[J]. Cancer Immunol Immunother, 2024, 73(1): 15.

[38] Sahu N, Viljoen HJ, Subramanian A. Continuous low-intensity ultrasound attenuates IL-6 and TNFα-induced catabolic effects and repairs chondral fissures in bovine osteochondral explants[J]. BMC Musculoskelet Disord, 2019, 20(1): 193.

[39] de Oliveira Perrucini PD, Poli-Frederico RC, de Almeida Pires-Oliveira DA, et al. Anti-inflammatory and healing effects of pulsed ultrasound therapy on fibroblasts[J]. Am J Phys Med Rehabil, 2020, 99(1): 19-25.

[40] Ogata T, Ito K, Shindo T, et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice[J]. PLoS One, 2017, 12(9): e0185555.

[41] Ichijo S, Shindo T, Eguchi K, et al. Low-intensity pulsed ultrasound therapy promotes recovery from stroke by enhancing angio-neurogenesis in mice in vivo[J]. Sci Rep, 2021, 11(1): 4958.

[42] Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117: 76-89.

[43] Sun P, Li Y, Yu W, et al. Low-intensity pulsed ultrasound improves myocardial ischaemia-reperfusion injury via migrasome-mediated mitocytosis[J]. Clin Transl Med, 2024, 14(7): e1749.

[44] Li H, Yang Q, Huang Z, et al. Dual-specificity phosphatase 12 attenuates oxidative stress injury and apoptosis in diabetic cardiomyopathy via the ASK1-JNK/p38 signaling pathway[J]. Free Radic Biol Med, 2022, 192: 13-24.

[45] Peuchant E, Bats ML, Moranvillier I, et al. Metastasis suppressor NM23 limits oxidative stress in mammals by preventing activation of stress-activated protein kinases/JNKs through its nucleoside diphosphate kinase activity[J]. FASEB J, 2017, 31(4): 1531-1546.

[46] Lin D, Chai Y, Izadpanah R, et al. NPR3 protects cardiomyocytes from apop tosis through inhibition of cytosolic BRCA1 and TNF-alpha[J]. Cell Cycle, 2016, 15(18): 2414-2419.

[47] Hu Y, Jia Y, Wang H, et al. Low-intensity pulsed ultrasound promotes cell viability and inhibits apoptosis of H9C2 cardiomyocytes in 3D bioprinting scaffolds via PI3K-Akt and ERK1/2 pathways[J]. J Biomater Appl, 2022, 37(3): 402-414.

[48] Li J, Zhang Q, Ren C, et al. Low-Intensity Pulsed Ultrasound Prevents the Oxidative Stress Induced Endothelial-Mesenchymal Transition in Human Aortic Endothelial Cells[J]. Cell Physiol Biochem, 2018, 45(4): 1350-1365.

[49] Bernal A, Pérez LM, De Lucas B, et al. Low-Intensity Pulsed Ultrasound Improves the Functional Properties of Cardiac Mesoangioblasts[J]. Stem Cell Rev Rep, 2015, 11(6): 852-865.

[50] Saucerman JJ, Tan PM, Buchholz KS, et al. Mechanical regulation of gene expression incardiac myocytes and fibroblasts[J]. Nat Rev Cardiol, 2019, 16(6): 361-378.

[51] Harvey W, Dyson M, Pond JB, et al. The stimulation of protein synthesis in human fibroblasts by therapeutic ultrasound[J]. Rheumatol Rehabil, 1975, 14(4): 237.

[52] Schlüter KD, Wenzel S. Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks[J]. Pharmacol Ther, 2008, 119(3): 311-325.

[53] Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle?[J]. EMBO Mol Med, 2020, 12(10): e10865.

[54] Nakata T, Shindo T, Ito K, et al. Beneficial Effects of Low-Intensity Pulsed Ultrasound Therapy on Right Ventricular Dysfunction in Animal Models[J]. JACC Basic Transl Sci, 2022, 8(3): 283-297.

[55] Zhang X, Fu Y, Li H, et al. H3 relaxin inhibits the collagen synthesis viaROS- and P2X7R-mediated NLRP3 inflammasome activation in cardiac fibroblasts under high glucose[J]. J Cell Mol, 2018, 22(3): 1816-1825.

[56] Zhao K, Weng L, Xu T, et al. Low-intensity pulsed ultrasound prevents prolonged hypoxia-induced cardiac fibrosis through HIF-1α/DNMT3a pathway via a TRAAK-dependent manner[J]. Clin Exp Pharmacol Physiol, 2021, 48(11): 1500-1514.

[57] Nguyen TP, Qu Z, Weiss JN. Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils[J]. J Mol Cell Cardiol, 2014, 70: 83-91.

[58] She G, Ren YJ, Wang Y, et al. KCa3.1 Channels Promote Cardiac Fibrosis Through Mediating Inflammation and Differentiation of Monocytes Into Myofibroblasts in Angiotensin II -Treated Rats[J]. J Am Heart Assoc, 2019, 8(1): e010418.

[59] Monma Y, Shindo T, Eguchi K, et al. Low-intensity pulsed ultrasound ameliorates cardiac diastolic dysfunction in mice: a possible novel therapy for heart failure with preserved left ventricular ejection fraction[J]. Cardiovasc Res, 2021, 117(5): 1325-1338.

[60] Yang H, Hu Y, Kong B, et al. Low-intensity pulsed ultrasound treatment mitigates ventricular arrhythmias via inhibiting microglia-mediated neuroinflammation in heart failure rat model[J]. Int Immunopharmacol, 2024, 126: 111317.

[61] Waters M, Miljkovic B, Rascon J, et al. Effects of 1 MHz Therapeutic Ultrasound on Limb Blood Flow and Microvascular Reactivity: A Randomized Pilot Trial[J]. Int J Environ Res Public Health, 2021, 18(21): 11444

[62] de Ávila Santana L, Alves JM, Andrade TA, et al. Clinical and immunohistopathological aspects of venous ulcers treatment by Low-Intensity Pulsed Ultrasound (LIPUS)[J]. Ultrasonics, 2013, 53(4): 870-879.

[63] 陈畅,张金鹏,彭洁,等. 低强度脉冲式超声波治疗老年冠心病心绞痛患者的疗效观察[J]. 中华老年医学杂志, 2023, 42(1): 18-22.

[64] 陈畅, 张金鹏, 彭洁, 等. 低强度脉冲式超声波治疗老年冠心病心绞痛患者的疗效及对心率变异性的影响[J]. 中国医学前沿杂志(电子版), 2023,15(4): 44-49.

[65] Shindo T, Ito K, Ogata T, et al. A randomized, double-blind, placebo-controlled pilot trial of low-intensity pulsed ultrasound therapy for refractory angina pectoris[J]. PLoS One, 2023, 18(6): e0287714.

[66] Signori LU, Rubin Neto LJ, Jaenisch RB, et al. Effects of therapeutic ultrasound on the endothelial function of patients with type 2 diabetes mellitus[J]. Braz J Med Biol Res, 2023, 56: e12576.

[67] 汤明明, 王欢,张倩为,等. 低强度脉冲式超声波治疗糖尿病高危足疗效观察[J]. 海南医学, 2022,33(7): 918-921.

[68] Nonogaki K, Yamazaki T, Murakami M, et al. Low-frequency and very low-intensity ultrasound decreases blood pressure in hypertensive subjects with type 2 diabetes[J]. Int J Cardiol, 2016, 215: 147-149.

[69] Nonogaki K, Murakami M, Yamazaki T, et al. Low-frequency and low-intensity ultrasound increases cardiac parasympathetic neural activity and decreases clinic hypertension in elderly hypertensive subjects with type 2 diabetes[J]. Int J Cardiol Heart Vasc, 2018, 19: 34-36.

[70] Nonogaki K, Murakami M, Yamazaki T, et al. Low-frequency and low-intensity ultrasound irradiation to the forearm improves an index of arterial stiffness in subjects with type 2 diabetes and hypertension[J]. Int J Cardiol Heart Vasc, 2017, 16: 4-6.

[71] Landry GJ, Louie D, Giraud D, et al. Ultrasound therapy for treatment of lower extremity intermittent claudication[J]. Am J Surg, 2021, 221(6): 1271-1275.

[72] 于锐, 程远, 刘丛. 低频治疗性超声波联合微泡造影剂辅助溶栓的实验研究[J]. 神经疾病与精神卫生, 2007, 7(3): 201-203.

[73] 李新艳, 向蓝虹, 蔡滢. 颈动脉硬化斑块患者行普罗布考联合超声波溶栓治疗的效果[J]. 中外医学研究, 2023, 21(4): 119-123.

[74] Roman N, Miclaus RS, Necula R, et al. Physiotherapy Efficiency in Post-stroke Upper Extremity Spasticity: TENS vs. Ultrasound vs. Paraffin[J]. In Vivo, 2023, 37(2): 916-923.

[75] Rahman MS, Uddin MT. Comparative efficacy of pregabalin and therapeutic ultrasound versus therapeutic ultrasound alone on patients with post stroke shoulder pain[J]. Mymens ingh Med J , 2014, 23(3): 456-460.

[76] 杨清泉, 周婷婷, 林乔. 超声波溶栓治疗急性脑梗死患者的康复效果观察[J]. 中国民康医学, 2016, 28(18): 62-63.

[77] Shimokawa H, Shindo T, Ishiki A, et al. A Pilot Study of Whole-Brain Low-Intensity Pulsed Ultrasound Therapy for Early Stage of Alzheimer ' s Disease (LIPUS-AD): A Randomized, Double-Blind, Placebo-Controlled Trial[J]. Tohoku J Exp Med, 2022, 258(3): 167-175.

[78] Mohamad Yusoff F, Kajikawa M, Yamaji T, et al. Low-intensity pulsed ultrasound improves symptoms in patients with Buerger disease: a double-blinded, randomized, and placebo-controlled study[J]. Sci Rep, 2024, 14(1): 13704.

来源:中国心血管杂志

相关推荐