C# OpenCvSharp 部署表格检测

B站影视 2025-01-22 08:54 2

摘要:该算法包含表格边界框检测、表格分割和表格方向识别三个部分,首先,ppyoloe-plus-x 对边界框进行预测,并对置信度较高的表格边界框(box)进行裁剪。裁剪后的单个表格实例会送入到DBNet中进行语义分割,分割结果通过OpenCv轮廓处理获得表格关键点(

百度网盘AI大赛-表格检测的第2名方案。

该算法包含表格边界框检测、表格分割和表格方向识别三个部分,首先,ppyoloe-plus-x 对边界框进行预测,并对置信度较高的表格边界框(box)进行裁剪。裁剪后的单个表格实例会送入到DBNet中进行语义分割,分割结果通过OpenCv轮廓处理获得表格关键点(point)。之后,我们根据DBNet计算的关键点在裁剪后的单个表格实例上绘制表格边界。最后,PP-LCNet结合表格边界先验和表格实例图像,对表格的方向进行预测,并根据之前定义的几何轮廓点与语义轮廓点的对应关系,将几何轮廓点映射为语义轮廓点。

paddle_cls.onnx

Model Properties

Inputs

name:input
tensor:Float[-1, 3, 624, 624]

Outputs

name:linear_1.tmp_1
tensor:Float[-1, 4]

yolo_edge_det.onnx

Model Properties

date:2024-10-28T08:16:43.725877
description:Ultralytics YOLO11l-seg model trained on coco-seg.yaml
author:Ultralytics
version:8.3.23
task:segment
license:AGPL-3.0 License (https://ultralytics.com/license)
docs:https://docs.ultralytics.com
stride:32
batch:1
imgsz:[800, 800]
names:{0: 'table'}

Inputs

name:images
tensor:Float[1, 3, 800, 800]

Outputs

name:output0
tensor:Float[1, 37, 13125]
name:output1
tensor:Float[1, 32, 200, 200]

yolo_obj_det.onnx

Model Properties

date:2024-10-28T13:52:42.181333
description:Ultralytics YOLO11l model trained on coco.yaml
author:Ultralytics
version:8.3.23
task:detect

stride:32
batch:1
imgsz:[928, 928]
names:{0: 'table'}

Inputs

name:images
tensor:Float[1, 3, 928, 928]

Outputs

name:output0
tensor:Float[1, 5, 17661]

C++封装DLL,C#调用

using OpenCvSharp;
using System;
using System.Diagnostics;
using System.Drawing;
using System.Drawing.Imaging;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;

namespace TableDetection
{
public partial class Form1 : Form
{
publicForm1
{
InitializeComponent;
}

Stopwatch stopwatch = new Stopwatch;
Mat image;
string image_path;
string startupPath;
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
const string DllName = "TableDetectionSharp.dll";
IntPtr engine;
/*
//初始化
extern "C" _declspec(dllexport) int __cdecl init(void** engine, char* obj_model_path, char* edge_model_path, char* cls_model_path, char* msg);

//tableDet
extern "C" _declspec(dllexport) int __cdecl tableDet(void* engine, Mat* image, char* msg, int* out_imgs_size, Mat* out_img1, Mat* out_img2, Mat* out_img3);

//释放
extern "C" _declspec(dllexport) void __cdecl destroy(void* engine);
*/

[DllImport(DllName, EntryPoint = "init", CallingConvention = CallingConvention.Cdecl)]
internal extern static int init(ref IntPtr engine, string obj_model_path, string edge_model_path, string cls_model_path, StringBuilder msg);

[DllImport(DllName, EntryPoint = "tableDet", CallingConvention = CallingConvention.Cdecl)]
internal extern static int tableDet(IntPtr engine, IntPtr image, StringBuilder msg, ref int out_imgs_size, IntPtr out_img1, IntPtr out_img2, IntPtr out_img3);

[DllImport(DllName, EntryPoint = "destroy", CallingConvention = CallingConvention.Cdecl)]
internal extern static int destroy(IntPtr engine);

private void Form1_Load(object sender, EventArgs e)
{
startupPath = Application.StartupPath;

string obj_model_path = startupPath + "\\model\\yolo_obj_det.onnx";
string edge_model_path = startupPath + "\\model\\yolo_edge_det.onnx";
string cls_model_path = startupPath + "\\model\\paddle_cls.onnx";

StringBuilder msg = new StringBuilder(512);

int res = init(ref engine, obj_model_path, edge_model_path, cls_model_path, msg);
if(res == -1)
{
MessageBox.Show(msg.ToString);
return;
}
else
{
Console.WriteLine(msg.ToString);
}
image_path = startupPath + "\\test_img\\real5.jpg";
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}

private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog;
ofd.Filter = fileFilter;
if(ofd.ShowDialog != DialogResult.OK)return;

pictureBox1.Image = ;
pictureBox2.Image = ;
textBox1.Text = "";

image_path = ofd.FileName;

}

Mat out_img1;
Mat out_img2;
Mat out_img3;

private void button2_Click(object sender, EventArgs e)
{
if(image_path == "")
{
return;
}

button2.Enabled =false;

Application.DoEvents;

Cv2.DestroyAllWindows;
if(image != ) image.Dispose;
if(out_img1 != ) out_img1.Dispose;
if(out_img2 != ) out_img2.Dispose;
if(out_img3 != ) out_img3.Dispose;
if(pictureBox1.Image != ) pictureBox1.Image.Dispose;

int out_imgs_size = 0;

out_img1 = new Mat;
out_img2 = new Mat;
out_img3 = new Mat;

stopwatch.Restart;

int res = tableDet(engine, image.CvPtr, msg, ref out_imgs_size, out_img1.CvPtr, out_img2.CvPtr, out_img3.CvPtr);
if(res == 0)
{
stopwatch.Stop;
double costTime = stopwatch.Elapsed.TotalMilliseconds;
if(out_imgs_size >= 1)
{
pictureBox2.Image = new Bitmap(out_img1.ToMemoryStream);
}

if(out_imgs_size >= 2)
{
Cv2.ImShow("2", out_img2);
}

if(out_imgs_size >= 3)
{
Cv2.ImShow("3", out_img3);
}

textBox1.Text = $"耗时:{costTime:F2}ms";
}
else
{
textBox1.Text = "识别失败";
}
button2.Enabled =true;
}

private void Form1_FormClosed(object sender, FormClosedEventArgs e)
{
destroy(engine);
}

private void button3_Click(object sender, EventArgs e)
{
if(pictureBox2.Image == )
{
return;
}
Bitmap output = new Bitmap(pictureBox2.Image);
var sdf = new SaveFileDialog;
sdf.Title = "保存";
sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";
if(sdf.ShowDialog == DialogResult.OK)
{
switch (sdf.FilterIndex)
{
case1:
{
output.Save(sdf.FileName, ImageFormat.Jpeg);
break;
}
case2:
{
output.Save(sdf.FileName, ImageFormat.Png);
break;
}
case3:
{
output.Save(sdf.FileName, ImageFormat.Bmp);
break;
}
}
MessageBox.Show("保存成功,位置:" + sdf.FileName);
}

}
}
}

来源:opendotnet

相关推荐