液压与气压传动考试题目重点总结(分析题)

B站影视 2024-12-07 14:56 4

摘要:答:其物理意义是:在密闭的管道中作恒定流量的理想液体具有三种形式的能量(动能、位能、压力能),在沿管道流动的过程中,三种能量之间可以相互转化,但是在管道任一断面处三种能量总和是一常量。

2、简单说明液压传动系统的组成。

答:动力装置。是把机械能转换为液体压力能的装置。

执行元件。是将液体的压力能转换为机械能的装置。

控制调节元件。是指控制或调节系统压力、流量、方向的元件。

辅助元件。是在系统中起散热、贮油、蓄能、连接、过滤、测压等等作用的元件。

工作介质。在系统中起传递运动、动力及信号的作用。

3、简述伯努利方程的物理意义。

答:其物理意义是:在密闭的管道中作恒定流量的理想液体具有三种形式的能量(动能、位能、压力能),在沿管道流动的过程中,三种能量之间可以相互转化,但是在管道任一断面处三种能量总和是一常量。

4、试述液压泵工作的必要条件。

答:1)必须具有密闭容积。2)密闭容积要能交替变化。3)吸油腔和压油腔要互相隔开,并且有良好的密封性。

5、为什么说先导式溢流阀的定压精度比直动式溢流阀高?

答:先导式溢流阀将控制压力的流量与主油路分开,从而减少了弹簧力变化以及液动力等对所控制压力的干扰。

14.齿轮泵产生泄漏的间隙为(端面)间隙和(径向)间隙,此外还存在(啮合) 间隙,其中(端面)泄漏占总泄漏量的80%~85%。

7.在下面几种调速回路中,(B、C、D)中的溢流阀是安全阀,(A)中的溢流阀是稳压阀。

(A) 定量泵和调速阀的进油节流调速回路 (B) 定量泵和旁通型调速阀的节流调速回路

(C) 定量泵和节流阀的旁路节流调速回路 (D) 定量泵和变量马达的闭式调速回路

8.为平衡重力负载,使运动部件不会因自重而自行下落,在恒重力负载情况下,采用(B)顺序阀作平衡阀,而在变重力负载情况下,采用(D)顺序阀作限速锁。

(A)内控内泄式 (B)内控外泄式 (C)外控内泄式 D)外控外泄式

9.顺序阀在系统中作卸荷阀用时,应选用(C)型,作背压阀时,应选用(A)型。

(A)内控内泄式 (B)内控外泄式 (C)外控内泄式 (D)外控外泄式

17.用同样定量泵,节流阀,溢流阀和液压缸组成下列几种节流调速回路,(B)能够承受负值负载,(C)的速度刚性最差,而回路效率最高。

(A)进油节流调速回 (B)回油节流调速回路 (C)旁路节流调速回路

1. 简述溢流阀在系统中的应用?

答:(1)作溢流调压用。(2)作安全保护用。(3)作卸荷阀用。(4)作背压阀用。

2.齿轮泵的液压径向力不平衡是怎样产生的?会带来什么后果?消除径向力不平衡的措施有哪些?

齿轮泵产生的液压径向力不平衡的原因有二个方面:一是液体压力产生的径向力。二是困油现象产生的径向力,致使齿轮泵径向力不平衡现象加剧。齿轮泵由于径向力不平衡,把齿轮压向吸油一侧,使齿轮轴受到弯曲作用,影响轴承寿命,同时还会使吸油腔的齿轮径向间隙变小,从而使齿轮与泵体内产生摩擦或卡死,影响泵的正常工作。消除径向力不平衡的主要措施:开压力平衡槽等。

32.已知单活塞杆液压缸两腔有效面积A1=2A2,液压泵供油流量为q,如果将液压缸差动连接,活塞实现差动快进,那么进入大腔的流量是(D),如果不差动连接,则小腔的排油流量是(A)。(A)0.5q (B)1.5 q (C)1.75 q (D)2 q

1. 沿程压力损失 液体在管中流动时因粘性摩擦而产生的损失。

2. 局部压力损失 (液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)

3. 液压卡紧现象 (当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。)

10.液压冲击 (在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。)

11.气穴现象;气蚀 (在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。这种因空穴产生的腐蚀称为气蚀。)

16.困油现象 (液压泵工作时,在吸、压油腔之间形成一个闭死容积,该容积的大小随着传动轴的旋转发生变化,导致压力冲击和气蚀的现象称为困油现象。)卸荷措施:在前后盖板或浮动轴套上开卸荷槽

17减小径向力的措施:(1) 合理选择齿宽及齿顶圆直径。(2) 缩小压油腔尺寸。(3) 延伸压油腔或吸油腔。(4) 通过在盖板上开设平衡槽,使它们分别与低、高压腔相通,产生一个与液压径向力平衡的作用。平衡径向力的措施都是以增加径向泄漏为代价。

齿轮泵泄漏:1) 泄漏途径:轴向间隙80% 径向间隙15% 啮合处5% 2) 危害:ηv↓3) 防泄措施:a) 减小轴向间隙 b) 轴向间隙补偿装置 浮动侧板 浮动轴套

绝对压力:以绝对零压为基准所测测压两基准 ;相对压力:以大气压力为基准所测
关系:绝对压力 = 大气压力 + 相对压力 或 相对压力(表压)= 绝对压力 - 大气压力
注 液压传动系统中所测压力均为相对压力即表压力;真空度 = 大气压力 - 绝对压力


液压泵液压马达理论流量qpt =vp*nqmt=vm*n实际流量qpqm理论输入功率Pip=Δp*qptPim=wTmt实际输入功率Pip=wTpPim=Δp*qm实际输出功率Pop=qpΔpPom=wTm理论转矩TptTmt实际转矩TpTm理论转矩与实际转矩关系Tpt,Tmt>Tm容积效率ηvp=qp/qptηvm=qmt/qm机械效率ηmp=Tpt/Tpηmm=Tm/Tmt总效率ηp=ηvp*ηmpηm=ηvm*ηm

6. 变量泵是指(排量)可以改变的液压泵,常见的变量泵有(单作用叶片泵)、(径向柱塞泵)、(轴向柱塞泵 )其中(单作用叶片泵)和(径向柱塞泵)是通过改变转子和定子的偏心距来实现变量,(轴向柱塞泵)是通过改变斜盘倾角来实现变量。

7.液压泵的实际流量比理论流量(小);而液压马达实际流量比理论流量(大)

先导溢流阀:阀口常闭,进出油口不通,为进口压力控制,阀口开启后保证进口压力稳定,出口接油箱,先导阀弹簧腔的泄漏油经阀体内流道内泄至出口。

先导顺序阀:顺序阀结构原理与溢流阀基本相同,唯一不同是顺序阀的出口不是接油箱,而是接到系统中继续用油之处,其压力数值由出口负载觉得。

8、可使液压泵泄荷的换向阀中位机能有(H、M、K)

容积调速:变量泵——定量马达(恒转矩)

调速阀:节流阀与定差减压阀串联

柱塞为奇数,数目越多,流量脉动越小

2、试比较先导型溢流阀和先导型顺序的异同点。

答:相同点:溢流阀与顺序阀同属压力控制阀,都是通过液压力与弹簧力进行比较来控制阀口动作;两阀的主阀口都是常闭的。不同点:1)顺序阀在结构上比溢流阀多一个外泄油口。

3、什么是液压基本回路?常见的液压基本回路有几类?各起什么作用?

答:由某些液压元件组成、用来完成特定功能的典型回路,称为液压基本回路。

常见的液压基本回路有三大类:

1)方向控制回路,它在液压系统中的作用是控制执行元件的启动、停止或改变运动方向。

2)压力控制回路,它的作用利用压力控制阀来实现系统的压力控制,用来实现稳压、减压,增压和多级调压等控制,满足执行元件在力或转矩上的要求。

3)速度控制回路,它是液压系统的重要组成部分,用来控制执行元件的运动速度。

6. 变量泵是指(排量)可以改变的液压泵,常见的变量泵有(单作用叶片泵)、(径向柱塞泵)、(轴向柱塞泵)其中 (单作用叶片泵)和(径向柱塞泵)是通过改变转子和定子的偏心距来实现变量,(轴向柱塞泵) 是通过改变斜盘倾角来实现变量。

8.斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为(柱塞与缸体)、(缸体与配油盘) 、(滑履与斜盘)。

18.顺序动作回路的功用在于使几个执行元件严格按预定顺序动作,按控制方式不同,分为(压力)控制和(行程)控制。同步回路的功用是使相同尺寸的执行元件在运动上同步,同步运动分为(速度)同步和(位置) 同步两大类。

17.差动连接 (单活塞杆液压缸的左、右两腔同时通压力油的连接方式称为差动连接。)

19.滑阀的中位机能 (三位滑阀在中位时各油口的连通方式,它体现了换向阀的控制机能。)

25.速度刚性 负载变化时调速回路阻抗速度变化的能力。

1.在图示的回路中,旁通型调速阀(溢流节流阀)装在液压缸的回油路上,通过分析其调速性能判断下面哪些结论是正确的。(A)缸的运动速度不受负载变化的影响,调速性能较好;(B)溢流节流阀相当于一个普通节流阀,只起回油路节流调速的作用,缸的运动速度受负载变化的影响;(C)溢流节流阀两端压差很小,液压缸回油腔背压很小,不能进行调速。

解:只有C正确,当溢流节流阀装在回油路上,节流阀出口压力为零,差压式溢流阀有弹簧的一腔油液压力也为零。当液压缸回油进入溢流节流阀的无弹簧腔时,只要克服软弹簧的作用力,就能使溢流口开度最大。这样,油液基本上不经节流阀而由溢流口直接回油箱,溢流节流阀两端压差很小,在液压缸回油腔建立不起背压,无法对液压缸实现调速。

2.如图所示的回路为带补油装置的液压马达制动回路,说明图中三个溢流阀和单向阀的作用。

解:液压马达在工作时,溢流阀5起安全作用。制动时换向阀切换到中位,液压马达靠惯性还要继续旋转,故产生液压冲击,溢流阀1,2分别用来限制液压马达反转和正转时产生的最大冲击压力,起制动缓冲作用。另一方面,由于液压马达制动过程中有泄漏,为避免马达在换向制动过程中产生吸油腔吸空现象,用单向阀3和4从油箱向回路补油。

3.如图所示是利用先导式溢流阀进行卸荷的回路。溢流阀调定压力 py=30×105Pa。要求考虑阀芯阻尼孔的压力损失,回答下列问题:1) 在溢流阀开启或关闭时,控制油路E,F段与泵出口处B点的油路是否始终是连通的?2) 在电磁铁DT断电时,若泵的工作压力 pB=30×105Pa, B点和E点压力哪个压力大?若泵的工作压力pB=15×105Pa,B点和E点哪个压力大?3)在电磁铁DT吸合时,泵的流量是如何流到油箱中去的?

解:1) 在溢流阀开启或关闭时,控制油路E,F段与泵出口处B点的油路始终得保持连通

2)当泵的工作压力pB=30×105Pa时,先导阀打开,油流通过阻尼孔流出,这时在溢流阀主阀芯的两端产生压降,使主阀芯打开进行溢流,先导阀入口处的压力即为远程控制口E点的压力,故pB> pE;当泵的工作压力pB=15×105Pa 时,先导阀关闭,阻尼小孔内无油液流动,pB= pE。

3)二位二通阀的开启或关闭,对控制油液是否通过阻尼孔(即控制主阀芯的启闭)有关,但这部分的流量很小,溢流量主要是通过CD油管流回油箱。

4.图(a),(b),(c)所示的三个调压回路是否都能进行三级调压(压力分别为60×105Pa、40×105Pa、10×105Pa)?三级调压阀压力调整值分别应取多少?使用的元件有何区别?

解:图(b)不能进行三级压力控制。三个调压阀选取的调压值无论如何交换,泵的最大压力均由最小的调定压力所决定,p=10×105Pa

图(a)的压力阀调定值必须满足pa1=60×105Papa2=40×105Papa3=10×105Pa。如果将上述调定值进行交换,就无法得到三级压力控制。图(a)所用的元件中,a1、a2必须使用先导型溢流阀,以便远程控制。a3可用远程调压阀(直动型)。

图(c)的压力阀调定值必须满足pc1=60×105Pa ,而pc2、pc3是并联的阀,互相不影响,故允许任选。设pc2=40×105Pa pc3=10×105Pa,阀c1必须用先导式溢流阀,而c2、c3可用远程调压阀。两者相比,图(c)比图(a)的方案要好。

5.图示的液压回路,原设计要求是夹紧缸I把工件夹紧后,进给缸II才能动作;并且要求夹紧缸I的速度能够调节。实际试车后发现该方案达不到预想目的,试分析其原因并提出改进的方法。

解:图(a)的方案中,要通过节流阀对缸I进行速度控制,溢流阀必然处于溢流的工作状况。这时泵的压力为溢流阀调定值,pB= py。B点压力对工件是否夹紧无关,该点压力总是大于顺序阀的调定值px,故进给缸II只能先动作或和缸I同时动作,因此无法达到预想的目的。

图(b)是改进后的回路,它是把图(a)中顺序阀内控方式改为外控方式,控制压力由节流阀出口A点引出。这样当缸I在运动过程中, A点的压力取决于缸I负载。当缸I夹紧工件停止运动后,A点压力升高到py,使外控顺序阀接通,实现所要求的顺序动作。图中单向阀起保压作用,以防止缸II在工作压力瞬间突然降低引起工件自行松开的事故。

6.图(a),(b)所示为液动阀换向回路。在主油路中接一个节流阀,当活塞运动到行程终点时切换控制油路的电磁阀3,然后利用节流阀的进油口压差来切换液动阀4,实现液压缸的换向。试判 断图示两种方案是否都能正常工作?

解:在(a)图方案中,溢流阀2装在节流阀1的后面,节流阀始终有油液流过。活塞在行程终了后,溢流阀处于溢流状态,节流阀出口处的压力和流量为定值,控制液动阀换向的压力差不变。因此,(a)图的方案可以正常工作。

在(b)图方案中,压力推动活塞到达终点后,泵输出的油液全部经溢流阀2回油箱,此时不再有油液流过节流阀,节流阀两端压力相等。因此,建立不起压力差使液动阀动作,此方案不能正常工作。

7.在图示的夹紧系统中,已知定位压力要求为10×105Pa,夹紧力要求为3×104,夹紧缸无杆腔面积1=100cm,试回答下列问题: 1)A,B,C,D各件名称,作用及其调整压力; 2)系统的工作过程。

解:1) A为 内控外泄顺序阀,作用是保证先定位、后夹紧的顺序动作,调整压力略大于10×105Pa

B为卸荷阀,作用是定位、夹紧动作完成后,使大流量泵卸载,调整压力略大于10×105Pa

C为压力继电器,作用是当系统压力达到夹紧压力时,发讯控制其他元件动作,调整压力为30×105Pa

D 为溢流阀,作用是夹紧后,起稳压作用,调整压力为30×105Pa

2)系统的工作过程:系统的工作循环是定位—夹紧—拔销—松开。其动作过程:当1DT得电、换向阀左位工作时,双泵供油,定位缸动作,实现定位;当定位动作结束后,压力升高,升至顺序阀A的调整压力值,A阀打开,夹紧缸运动;当夹紧压力达到所需要夹紧力时,B阀使大流量泵卸载,小流量泵继续供油,补偿泄漏,以保持系统压力,夹紧力由溢流阀D控制,同时,压力继电器C发讯,控制其他相关元件动作。

8. 如图所示采用蓄能器的压力机系统的两种方案,其区别在于蓄能器和压力继电器的安装位置不同。试分析它们的工作原理,并指出图(a)和(b)的系统分别具有哪些功能?

解:图(a)方案,当活塞在接触工件慢进和保压时,或者活塞上行到终点时,泵一部分油液进入蓄能器。当蓄能器压力达到一定值,压力继电器发讯使泵卸载,这时,蓄能器的压力油对压力机保压并补充泄漏。当换向阀切换时,泵和蓄能器同时向缸供油,使活塞快速运动。蓄能器在活塞向下向上运动中,始终处于压力状态。由于蓄能器布置在泵和换向阀之间,换向时兼有防止液压冲击的功能。

图(b)方案,活塞上行时蓄能器与油箱相通,故蓄能器内的压力为零。当活塞下行接触工件时泵的压力上升,泵的油液进入蓄能器。当蓄能器的压力上升到调定压力时,压力继电器发讯使泵卸载,这时缸由蓄能器保压。该方案适用于加压和保压时间较长的场合。与(a)方案相比,它没有泵和蓄能器同时供油、满足活塞快速运动的要求及当换向阀突然切换时、蓄能器吸收液压冲击的功能。

1.液压传动中常用的液压泵分为哪些类型?

答:1) 按液压泵输出的流量能否调节分类有定量泵和变量泵。定量泵:液压泵输出流量不能调节,即单位时间内输出的油液体积是一定的。 变量泵:液压泵输出流量可以调节,即根据系统的需要,泵输出不同的流量。

2)按液压泵的结构型式不同分类有齿轮泵(外啮合式、内啮合式)、 叶片泵(单作用式、双作用式)、柱塞泵(轴向式、径向式)螺杆泵。

2.什么叫液压泵的工作压力,最高压力和额定压力?三者有何关系?

答:液压泵的工作压力是指液压泵在实际工作时输出油液的压力,即油液克服阻力而建立起来的压力。液压泵的工作压力与外负载有关,若外负载增加,液压泵的工作压力也随之升高。

液压泵的最高工作压力是指液压泵的工作压力随外载的增加而增加,当工作压力增加到液压泵本身零件的强度允许值和允许的最大泄漏量时,液压泵的工作压力就不再增加了,这时液压泵的工作压力为最高工作压力。

液压泵的额定压力是指液压泵在工作中允许达到的最高工作压力,即在液压泵铭牌或产品样本上标出的压力。

考虑液压泵在工作中应有一定的压力储备,并有一定的使用寿命和容积效率,通常它的工作压力应低于额定压力。在液压系统中,定量泵的工作压力由溢流阀调定,并加以稳定;变量泵的工作压力可通过泵本身的调节装置来调整。应当指出,千万不要误解液压泵的输出压力就是额定压力,而是工作压力。

3.什么叫液压泵的排量,流量,理论流量,实际流量和额定流量?他们之间有什么关系?

答:液压泵的排量是指泵轴转一转所排出油液的体积,常用V表示,单位为ml/r。液压泵的排量取决于液压泵密封腔的几何尺寸,不同的泵,因参数不同,所以排量也不一样。

液压泵的流量是指液压泵在单位时间内输出油液的体积,又分理论流量和实际流量。

理论流量是指不考虑液压泵泄漏损失情况下,液压泵在单位时间内输出油液的体积,常用qt表示,单位为l/min(升/分)。排量和理论流量之间的关系是:

式中 n——液压泵的转速(r/min);q——液压泵的排量(ml/r

实际流量q是指考虑液压泵泄漏损失时,液压泵在单位时间内实际输出的油液体积。由于液压泵在工作中存在泄漏损失,所以液压泵的实际输出流量小于理论流量。

额定流量qs是指泵在额定转速和额定压力下工作时,实际输出的流量。泵的产品样本或铭牌上标出的流量为泵的额定流量。

4.什么叫液压泵的流量脉动?对工作部件有何影响?哪种液压泵流量脉动最小?

答:液压泵在排油过程中,瞬时流量是不均匀的,随时间而变化。但是,在液压泵连续转动时,每转中各瞬时的流量却按同一规律重复变化,这种现象称为液压泵的流量脉动。液压泵的流量脉动会引起压力脉动,从而使管道,阀等元件产生振动和噪声。而且,由于流量脉动致使泵的输出流量不稳定,影响工作部件的运动平稳性,尤其是对精密的液压传动系统更为不利。通常,螺杆泵的流量脉动最小,双作用叶片泵次之,齿轮泵和柱塞泵的流量脉动最大。

5.齿轮泵的径向力不平衡是怎样产生的?会带来什么后果?消除径向力不平衡的措施有哪些?

答:齿轮泵产生径向力不平衡的原因有三个方面:一是液体压力产生的径向力。这是由于齿轮泵工作时,压油腔的压力高于吸油腔的压力,并且齿顶圆与泵体内表面存在径向间隙,油液会通过间隙泄漏,因此从压油腔起沿齿轮外缘至吸油腔的每一个齿间内的油压是不同的,压力逐渐递减。二是齿轮传递力矩时产生的径向力。这一点可以从被动轴承早期磨损得到证明,径向力的方向通过齿轮的啮合线,使主动齿轮所受合力减小,使被动齿轮所受合力增加。三是困油现象产生的径向力,致使齿轮泵径向力不平衡现象加剧。

齿轮泵由于径向力不平衡,把齿轮压向一侧,使齿轮轴受到弯曲作用,影响轴承寿命,同时还会使吸油腔的齿轮径向间隙变小,从而使齿轮与泵体内产生摩擦或卡死,影响泵的正常工作。

消除径向力不平衡的措施: 1) 缩小压油口的直径,使高压仅作用在一个齿到两个齿的范围,这样压力油作用在齿轮上的面积缩小了,因此径向力也相应减小。有些齿轮泵,采用开压力平衡槽的办法来解决径向力不平衡的问题。如此有关零件(通常在轴承座圈)上开出四个接通齿间压力平衡槽,并使其中两个与压油腔相通,另两个与吸油腔相通。这种办法可使作用在齿轮上的径向力大体上获得平衡,但会使泵的高低压区更加接近,增加泄漏和降低容积效率。

6.限压式变量叶片泵适用于什么场合?有何优缺点?

答:限压式变量叶片泵的流量压力特性曲线如图所示。

在泵的供油压力小于p限时,流量按AB段变化,泵只是有泄漏损失,当泵的供油压力大于p限时,泵的定子相对于转子的偏心距e减小,流量随压力的增加而急剧下降,按BC曲线变化。由于限压式变量泵有上述压力流量特性,所以多应用于组合机床的进给系统,以实现快进→工进→快退等运动;限压式变量叶片泵也适用于定位、夹紧系统。当快进和快退,需要较大的流量和较低的压力时,泵在AB段工作;当工作进给,需要较小的流量和较高的压力时,则泵在BC段工作。在定位﹑夹紧系统中,当定位、夹紧部件的移动需要低压、大流量时,泵在AB段工作;夹紧结束后,仅需要维持较高的压力和较小的流量(补充泄漏量),则利用C点的特性。总之,限压式变量叶片泵的输出流量可根据系统的压力变化(即外负载的大小),自动地调节流量,也就是压力高时,输出流量小;压力低时,输出流量大。

优缺点:1)限压式变量叶片泵根据负载大小,自动调节输出流量,因此功率损耗较小,可以减少油液发热。2)液压系统中采用变量泵,可节省液压元件的数量,从而简化了油路系统。3)泵本身的结构复杂,泄漏量大,流量脉动较严重,致使执行元件的运动不够平稳。4)存在径向力不平衡问题,影响轴承的寿命,噪音也大。

7.什么是困油现象?外啮合齿轮泵、双作用叶片泵和轴向柱塞泵存在困油现象吗?它们是如何消除困油现象的影响的?

答:液压泵的密闭工作容积在吸满油之后向压油腔转移的过程中,形成了一个闭死容积。如果这个闭死容积的大小发生变化,在闭死容积由大变小时,其中的油液受到挤压,压力急剧升高,使轴承受到周期性的压力冲击,而且导致油液发热;在闭死容积由小变大时,又因无油液补充产生真空,引起气蚀和噪声。这种因闭死容积大小发生变化导致压力冲击和气蚀的现象称为困油现象。困油现象将严重影响泵的使用寿命。原则上液压泵都会产生困油现象。

外啮合齿轮泵在啮合过程中,为了使齿轮运转平稳且连续不断吸、压油,齿轮的重合度ε必须大于1,即在前一对轮齿脱开啮合之前,后一对轮齿已进入啮合。在两对轮齿同时啮合时,它们之间就形成了闭死容积。此闭死容积随着齿轮的旋转,先由大变小,后由小变大。因此齿轮泵存在困油现象。为消除困油现象,常在泵的前后盖板或浮动轴套(浮动侧板)上开卸荷槽,使闭死容积限制为最小,容积由大变小时与压油腔相通,容积由小变大时与吸油腔相通。

在双作用叶片泵中,因为定子圆弧部分的夹角>配油窗口的间隔夹角>两叶片的夹角,所以在吸、压油配流窗口之间虽存在闭死容积,但容积大小不变化,所以不会出现困油现象。但由于定子上的圆弧曲线及其中心角都不能做得很准确,因此仍可能出现轻微的困油现象。为克服困油现象的危害,常将配油盘的压油窗口前端开一个三角形截面的三角槽,同时用以减少油腔中的压力突变,降低输出压力的脉动和噪声。此槽称为减振槽。

在轴向柱塞泵中,因吸、压油配流窗口的间距≥缸体柱塞孔底部窗口长度,在离开吸(压)油窗口到达压(吸)油窗口之前,柱塞底部的密闭工作容积大小会发生变化,所以轴向柱塞泵存在困油现象。人们往往利用这一点,使柱塞底部容积实现预压缩(预膨胀),待压力升高(降低)接近或达到压油腔(吸油腔)压力时再与压油腔(吸油腔)连通,这样一来减缓了压力突变,减小了振动、降低了噪声。

8.柱塞缸有何特点?

答:1)柱塞端面是承受油压的工作面,动力是通过柱塞本身传递的。

2)柱塞缸只能在压力油作用下作单方向运动,为了得到双向运动,柱塞缸应成对使用,或依靠自重(垂直放置)或其它外力实现。

3)由于缸筒内壁和柱塞不直接接触,有一定的间隙,因此缸筒内壁不用加工或只做粗加工,只需保证导向套和密封装置部分内壁的精度,从而给制造者带来了方便。

4)柱塞可以制成空心的,使重量减轻,可防止柱塞水平放置时因自重而下垂。

9.液压缸为什么要密封?哪些部位需要密封?常见的密封方法有哪几种?

答:液压缸高压腔中的油液向低压腔泄漏称为内泄漏,液压缸中的油液向外部泄漏叫做外泄漏。由于液压缸存在内泄漏和外泄漏,使得液压缸的容积效率降低,从而影响液压缸的工作性能,严重时使系统压力上不去,甚至无法工作;并且外泄漏还会污染环境,因此为了防止泄漏的产生,液压缸中需要密封的地方必须采取相应的密封措施。

液压缸中需要密封的部位有:活塞、活塞杆和端盖等处。

常用的密封方法有三种:1)间隙密封 这是依靠两运动件配合面间保持一很小的间隙,使其产生液体摩擦阻力来防止泄漏的一种密封方法。用该方法密封,只适于直径较小、压力较低的液压缸与活塞间密封。为了提高间隙密封的效果,在活塞上开几条环形槽,这些环形槽的作用有两方面,一是提高间隙密封的效果,当油液从高压腔向低压腔泄漏时,由于油路截面突然改变,在小槽内形成旋涡而产生阻力,于是使油液的泄漏量减少;另一是阻止活塞轴线的偏移,从而有利于保持配合间隙,保证润滑效果,减少活塞与缸壁的磨损,增加间隙密封性能。2)橡胶密封圈密封 按密封圈的结构形式不同有O型、Y型、Yx型和V型密封圈,O形密封圈密封原理是依靠O形密封圈的预压缩,消除间隙而实现密封。Y型、Yx型和V型密封圈是依靠密封圈的唇口受液压力作用变形,使唇口贴紧密封面而进行密封,液压力越高,唇边贴得越紧,并具有磨损后自动补偿的能力。3)橡塑组合密封装置 由O型密封圈和聚四氟乙烯做成的格来圈或斯特圈组合而成。这种组合密封装置是利用O型密封圈的良好弹性变形性能,通过预压缩所产生的预压力将格来圈或斯特圈紧贴在密封面上起密封作用。O型密封圈不与密封面直接接触,不存在磨损、扭转、啃伤等问题,而与密封面接触的格来圈或斯特圈为聚四氟乙烯塑料,不仅具有极低的摩擦因素(0.02~0.04,仅为橡胶的1/10),而且动、静摩擦因素相当接近。此外因具有自润滑性,与金属组成摩擦付时不易粘着;启动摩擦力小,不存在橡胶密封低速时的爬行现象。此种密封不紧密封可靠、摩擦力低而稳定,而且使用寿命比普通橡胶密封高百倍,应用日益广泛。

10.液压缸为什么要设缓冲装置?

答:当运动件的质量较大,运动速度较高时,由于惯性力较大,具有较大的动量。在这种情况下,活塞运动到缸筒的终端时,会与端盖发生机械碰撞,产生很大的冲击和噪声,严重影响加工精度,甚至引起破坏性事故,所以在大型、高压或高精度的液压设备中,常常设有缓冲装置,其目的是使活塞在接近终端时,增加回油阻力,从而减缓运动部件的运动速度,避免撞击液压缸端盖。

11.液压马达和液压泵有哪些相同点和不同点?

答:液压马达和液压泵的相同点:1)从原理上讲,液压马达和液压泵是可逆的,如果用电机带动时,输出的是液压能(压力和流量),这就是液压泵;若输入压力油,输出的是机械能(转矩和转速),则变成了液压马达。 2)从结构上看,二者是相似的。 3)从工作原理上看,二者均是利用密封工作容积的变化进行吸油和排油的。对于液压泵,工作容积增大时吸油,工作容积减小时排出高压油。对于液压马达,工作容积增大时进入高压油,工作容积减小时排出低压油。

液压马达和液压泵的不同点:1)液压泵是将电机的机械能转换为液压能的转换装置,输出流量和压力,希望容积效率高;液压马达是将液体的压力能转为机械能的装置,输出转矩和转速,希望机械效率高。因此说,液压泵是能源装置,而液压马达是执行元件。2)液压马达输出轴的转向必须能正转和反转,因此其结构呈对称性;而有的液压泵(如齿轮泵、叶片泵等)转向有明确的规定,只能单向转动,不能随意改变旋转方向。3)液压马达除了进、出油口外,还有单独的泄漏油口;液压泵一般只有进、出油口(轴向柱塞泵除外),其内泄漏油液与进油口相通。4)液压马达的容积效率比液压泵低;通常液压泵的工作转速都比较高,而液压马达输出转速较低。另外,齿轮泵的吸油口大,排油口小,而齿轮液压马达的吸、排油口大小相同;齿轮马达的齿数比齿轮泵的齿数多;叶片泵的叶片须斜置安装,而叶片马达的叶片径向安装;叶片马达的叶片是依靠根部的燕式弹簧,使其压紧在定子表面,而叶片泵的叶片是依靠根部的压力油和离心力作用压紧在定子表面上。

12.什么是换向阀的“位”与“通”?各油口在阀体什么位置?

答:1)换向阀的“位”:为了改变液流方向,阀芯相对于阀体应有不同的工作位置,这个工作位置数叫做“位”。职能符号中的方格表示工作位置,三个格为三位,两个格为二位。换向阀有几个工作位置就相应的有几个格数,即位数。

2)换向阀的“通”:当阀芯相对于阀体运动时,可改变各油口之间的连通情况,从而改变液体的流动方向。通常把换向阀与液压系统油路相连的油口数(主油口)叫做“通”。

3)换向阀的各油口在阀体上的位置:通常,进油口P位于阀体中间,与阀孔中间沉割槽相通;回油口O位于P口的侧面,与阀孔最边的沉割槽相通;工作油口A、B位于P口的上面,分别与P两侧的沉割槽相通;泄漏口L位于最边位置。

13.选择三位换向阀的中位机能时应考虑哪些问题?

答:1)系统保压 当换向阀的P口被堵塞时,系统保压。这时液压泵能用于多执行元件液压系统。

2)系统卸载 当油口P和O相通时,整个系统卸载。

3)换向平稳性和换向精度 当工作油口A和B各自堵塞时,换向过程中易产生液压冲击,换向平稳性差,但换向精度高。反之,当油口A和B都与油口O相通时,换向过程中机床工作台不易迅速制动,换向精度低,但换向平稳性好,液压冲击也小。

4)启动平稳性 换向阀中位,如执行元件某腔接通油箱,则启动时该腔因无油液缓冲而不能保证平稳启动。

5)执行元件在任意位置上停止和浮动 当油口A和B接通,卧式液压缸和液压马达处于浮动状态,可以通过手动或机械装置改变执行机构位置;立式液压缸则因自重不能停止在任意位置。

14.溢流阀在液压系统中有何功用?

答:溢流阀在液压系统中很重要,特别是定量泵系统,没有溢流阀几乎不可能工作。它的主要功能有如下几点:

1)起稳压溢流作用 用定量泵供油时,它与节流阀配合,可以调节和平衡液压系统中的流量。在这种场合下,阀口经常随着压力的波动而开启,油液经阀口流回油箱,起稳压溢流作用。

2)起安全阀作用 避免液压系统和机床因过载而引起事故。在这种场合下,阀门平时是关闭的,只有负载超过规定的极限时才开启,起安全作用。通常,把溢流阀的调定压力比系统最高压力调高10~20%。

3)作卸荷阀用 由先导型溢流阀与二位二通电磁阀配合使用,可使系统卸荷。

4)作远程调压阀用 用管路将溢流阀的遥控口接至调节方便的远程调节进口处,以实现远控目的。 5)作高低压多级控制用 换向阀将溢流阀的遥控口和几个远程调压阀连接,即可实现高低压多级控制。

6)用于产生背压 将溢流阀串联在回油路上,可以产生背压,使执行元件运动平稳。此时溢流阀的调定压力低,一般用直动式低压溢流阀即可。

15.试比较先导型溢流阀和先导型减压阀的异同点。

答:相同点:溢流阀与减压阀同属压力控制阀,都是由液压力与弹簧力进行比较来控制阀口动作;两阀都可以在先导阀的遥控口接远程调压阀实现远控或多级调压。

差别:1)溢流阀阀口常闭,进出油口不通;减压阀阀口常开,进出油口相通。2)溢流阀为进口压力控制,阀口开启后保证进口压力稳定;减压阀为出口压力控制,阀口关小后保证出口压力稳定。3)溢流阀出口接油箱,先导阀弹簧腔的泄漏油经阀体内流道内泄至出口;减压阀出口压力油去工作,压力不为零,先导阀弹簧腔的泄漏油有单独的油口引回油箱。

16.影响节流阀的流量稳定性的因素有哪些?

答:1) 节流阀前后压力差的影响。压力差变化越大,流量q的变化也越大。

2)指数m的影响。m与节流阀口的形状有关,m值大,则对流量的影响也大。节流阀口为细长孔(m=1)时比节流口为薄壁孔(m=0.5)时对流量的影响大。

3) 节流口堵塞的影响。节流阀在小开度时,由于油液中的杂质和氧化后析出的胶质、沥青等以及极化分子,容易产生部分堵塞,这样就改变了原来调节好的节流口通流面积,使流量发生变化。一般节流通道越短,通流面积越大,就越不容易堵塞。为了减小节流口堵塞的可能性,节流口应采用薄壁的形式。

4) 油温的影响。油温升高,油的粘度减小,因此使流量加大。油温对细长孔影响较大,而对薄壁孔的影响较小。

17.为什么调速阀能够使执行元件的运动速度稳定?

答:调速阀是由节流阀和减压阀串联而成。调速阀进口的油液压力为p1,经减压阀流到节流阀的入口,这时压力降到p2再经节流阀到调速阀出口,压力由p2又降到p3。油液作用在减压阀阀芯左、右两端的作用力为(p3A+Ft)和p2A,其中A为减压阀阀芯面积,Ft为弹簧力。当阀芯处于平衡时(忽略弹簧力),则 p2A= p3A+ Ft , p2-p3=Ft /A=常数。为了保证节流阀进、出口压力差为常数,则要求p2和p3必须同时升高或降低同样的值。当进油口压力 p1升高时,p2也升高,则阀芯右端面的作用力增大,使阀芯左移,于是减压阀的开口减小,减压作用增强,使p2又降低到原来的数值;当进口压力p1降低时,p2也降低,阀芯向右移动,开口增大,减压作用减弱,使p2升高,仍恢复到原来数值。当出口压力 p3升高时,阀芯向右移动,减压阀开口增大,减压作用减弱,p2也随之升高;当出口压力p3减小时,阀芯向左移动,减压阀开口减小,减压作用增强了,因而使p2也降低了。这样,不管调速阀进、出口的压力如何变化,调速阀内的节流阀前后的压力差(p2-p3)始终保持不变,所以通过节流阀的流量基本稳定,从而保证了执行元件运动速度的稳定。

18.调速阀和旁通型调速阀(溢流节流阀)有何异同点?

答:调速阀与旁通型调速阀都是压力补偿阀与节流阀复合而成,其压力补偿阀都能保证在负载变化时节流阀前后压力差基本不变,使通过阀的流量不随负载的变化而变化。

用旁通型调速阀调速时,液压泵的供油压力随负载而变化的,负载小时供油压力也低,因此功率损失较小;但是该阀通过的流量是液压泵的全部流量,故阀芯的尺寸要取得大一些;又由于阀芯运动时的摩擦阻力较大,因此它的弹簧一般比调速阀中减压阀的弹簧刚度要大。这使得它的节流阀前后的压力差值不如调速阀稳定,所以流量稳定性不如调速阀。旁通型调速阀适用于对速度稳定性要求稍低一些、而功率较大的节流调速回路中。液压系统中使用调速阀调速时,系统的工作压力由溢流阀根据系统工作压力而调定,基本保持恒定,即使负载较小时,液压泵也按此压力工作,因此功率损失较大;但该阀的减压阀所调定的压力差值波动较小,流量稳定性好,因此适用于对速度稳定性要求较高,而功率又不太大的节流调速回路中。 旁通型调速阀只能安装在执行元件的进油路上,而调速阀还可以安装在执行元件的回油路、旁油路上。这是因为旁通型调速阀中差压式溢流阀的弹簧是弱弹簧,安装在回油路或旁油路时,其中的节流阀进口压力建立不起来,节流阀也就起不到调节流量的作用。

19.什么是液压基本回路?常见的液压基本回路有几类?各起什么作用?

答:由某些液压元件组成、用来完成特定功能的典型回路,称为液压基本回路。常见的液压基本回路有三大类: 1)方向控制回路,它在液压系统中的作用是控制执行元件的启动、停止或改变运动方向。2)压力控制回路,它的作用利用压力控制阀来实现系统的压力控制,用来实现稳压、减压,增压和多级调压等控制,满足执行元件在力或转矩上的要求。3)速度控制回路,它是液压系统的重要组成部分,用来控制执行元件的运动速度。

20.液压系统中为什么要设置背压回路?背压回路与平衡回路有何区别?

答:在液压系统中设置背压回路,是为了提高执行元件的运动平稳性或减少爬行现象。这就要在回油路上设置背压阀,以形成一定的回油阻力,一般背压为0.3~0.8MPa,背压阀可以是装有硬弹簧的单向阀、顺序阀,也可以是溢流阀、节流阀等。

无论是平衡回路,还是背压回路,在回油管路上都存在背压,故都需要提高供油压力。但这两种基本回路的区别在于功用和背压的大小不同。背压回路主要用于提高进给系统的稳定性,提高加工精度,所具有的背压不大。平衡回路通常是用于立式液压缸或起重液压马达平衡运动部件的自重,以防运动部件自行下滑发生事故,其背压应根据运动部件的重量而定。

21.图示为三种不同形式的平衡回路,试从消耗功率、运动平稳性和锁紧作用比较三者在性能上的区别。

答:图a为采用单向顺序阀的平衡回路,运动平稳性好,但顺序阀的调定压力取决于活塞部件的重量,运动时消耗在顺序阀的功率损失较大。由于顺序阀是滑阀结构,锁紧性能较差。多用于重物为恒负载场合。

图b为采用远控平衡阀的平衡回路,远控平衡阀是一种特殊结构的远控顺序阀,它不但具有很好的密封性,能起到长时间的锁闭定位作用,而且阀口大小能自动适应不同负载对背压的要求,保证了活塞下降速度的稳定性不受载荷变化的影响,且功率损失小。这种远控平衡阀又称为限速锁。多用于变负载场合。

图c为采用液控单向阀的平衡回路,由于液控单向阀是锥面密封,故锁闭性能好。单向阀接通后液压缸不产生背压,功率损失小。但最大的缺点是运动平稳性差,这是因为活塞下行过程中,控制油失压而使液控单向阀时开时关,致使活塞下降断断续续。为此应在回油路上串联一单向节流阀,活塞部件的重量由节流阀产生的背压平衡,保证控制油路有一定压力,其运动平稳性和功率损失与节流阀开口大小有关。

22.多缸液压系统中,如果要求以相同的位移或相同的速度运动时,应采用什么回路?这种回路通常有几种控制方法?哪种方法同步精度最高?

答:在多缸液压系统中,如果要求执行元件以相同的位移或相同的速度运动时,应采用同步回路。从理论上讲,只要两个液压缸的有效面积相同、输入的流量也相同的情况下,应该做出同步动作。但是,实际上由于负载分配的不均衡,摩擦阻力不相等,泄漏量不同,均会使两液压缸运动不同步,因此需要采用同步回路。

同步回路的控制方法一般有三种:容积控制、流量控制和伺服控制。容积式同步回路如串联缸的同步回路、采用同步缸(同步马达)的同步回路,其同步精度不高,为此回路中可设置补偿装置;流量控制式同步回路如用调速阀的同步回路、用分流集流阀的同步回路,其同步精度较高(主要指后者);伺服式同步回路的同步精度最高。

23.液压系统中为什么要设置快速运动回路?实现执行元件快速运动的方法有哪些?

答:在工作部件的工作循环中,往往只要部分时间要求较高的速度,如机床的快进→工进→快退的自动工作循环。在快进和快退时负载小,要求压力低,流量大;工作进给时负载大,速度低,要求压力高,流量小。这种情况下,若用一个定量泵向系统供油,则慢速运动时,势必使液压泵输出的大部分流量从溢流阀溢回油箱,造成很大的功率损失,并使油温升高。为了克服低速运动时出现的问题,又满足快速运动的要求,可在系统中设置快速运动回路。

实现执行元件快速运动的方法主要有三种: 1) 增加输入执行元件的流量,如双泵供油快速运动回路、自重充液快速运动回路; 2) 减小执行元件在快速运动时的有效工作面积,如液压缸差动连接快速运动回路、增速缸的增速回路、采用辅助缸的快速运动回路; 3) 将以上两种方法联合使用。

24.若先导型溢流阀主阀芯或导阀的阀座上的阻尼孔被堵死,将会出现什么故障?

答:若阻尼孔完全阻塞,油压传递不到主阀上腔和导阀前腔,导阀就会失去对主阀的压力调节作用,这时调压手轮失效。因主阀芯上腔的油压无法保持恒定的调定值,当进油腔压力很低时就能将主阀打开溢流,溢流口瞬时开大后,由于主阀上腔无油液补充,无法使溢流口自行关小,因此主阀常开系统建立不起压力。 若溢流阀先导锥阀座上的 阻尼小孔堵塞,导阀失去对主阀压力的控制作用,调压手轮无法使压力降低,此时主阀芯上下腔压力相等,主阀始终关闭不会溢流,压力随负载的增加而上升,溢流阀起不到安全保护作用。

来源:答案鬼

相关推荐