摘要:大家好,我是老徐。很久没写软文了。今天给大家来一炮大的。首先,我先给大家说说今天这个软文是怎么回事:我今天早上刷抖音的时候,突然发现一个很有学科交叉性质,又很有意思的问题:你的外籍朋友遇到了一个数学难题,希望你能用外语写信帮助解决这个问题。看到这个题目我就有了
大家好,我是老徐。很久没写软文了。今天给大家来一炮大的。首先,我先给大家说说今天这个软文是怎么回事:
我今天早上刷抖音的时候,突然发现一个很有学科交叉性质,又很有意思的问题:你的外籍朋友遇到了一个数学难题,希望你能用外语写信帮助解决这个问题。
看到这个题目我就有了灵感,所以,今天没空也没想法拍视频,而是想要直接写一个软文来回复一下。接下来我直接将我通过AI助理整理的英文版答案po上来,也想要请大神帮我核对答案是否正确。另外,本文结尾会有题目出处。
Dear friend,
Here is the solution to the math problem you provided.
First, we find the intersection points of the lines and the hyperbola.
For the intersection of and , substituting into , we get , since , then , , , and
So the coordinates of point A are
For the intersection of and , substituting into , we get , since , then , , , and
So the coordinates of point B are
The area of triangle AOB can be calculated by subtracting the areas of two smaller triangles from the area of a larger trapezoid.
The intersection of and gives , (we ignore this as we are working in the first quadrant)
Let's consider the trapezoid formed by the points , , and
The area of the trapezoid
The area of triangle AOC (where C is the intersection of and x - axis, i.e. )
The area of triangle BOD (where D is the intersection of and x - axis, i.e. )
We know that the area of triangle AOB
After substituting and simplifying the above expressions, we can solve for
Since
Best regards,
[Your Name as a Subject Blogger]
以上是我通过助理整理的答案。接下来我将原本的出题图片奉上:
另外,本图片,题目均来自木牍中考的一期视频:以下是视频链接:5.10 W@m.dn 10/30 zTl:/ 学霸们都沉默了…… # 初中数学 # 初中英语 # 安徽中考 # 期末试卷 # 搞笑 https://v.douyin.com/iypRu7Me/ 复制此链接,打开Dou音搜索,直接观看视频!
仅此。希望大家不要举报。我也只是掺和一脚,写点稀奇的玩玩。
来源:瑾瑜教育