摘要:2025年10月22日,北京——加拿大不列颠哥伦比亚大学的Corey Stephenson教授做客康龙化成第五十九期“合成与药物化学前沿”名师线上讲座,报告主题为“自由基理念:可见光催化的起源与发展”。报告重点介绍了:1)光催化自由基反应用作当代有机合成通用方
转自:康龙化成
康龙化成举办第五十九期“合成与药物化学前沿”名师线上讲座
2025年10月22日,北京——加拿大不列颠哥伦比亚大学的Corey Stephenson教授做客康龙化成第五十九期“合成与药物化学前沿”名师线上讲座,报告主题为“自由基理念:可见光催化的起源与发展”。报告重点介绍了:1)光催化自由基反应用作当代有机合成通用方法的发展历程;2)高通量自动化光流体化学从基础研究到工业应用的转化;3)新型光催化自由基反应的设计与机理研究。
首先,Corey Stephenson教授介绍了早期课题组在合成天然产物Actinophyllicacid(Laura Furst)和GliocladinC时用到的光催化自由基反应:以Ru(bpy)₃Cl₂为催化剂,在可见光诱导下实现了温和条件下的关键C–C键构建,并且可以通过不同的有机碱添加剂实现了C–C键与C–H键生成的化学选择性调控。Stephenson教授回忆起2019年4月与MacMillan教授和Yoon教授一道的康龙之行,三位教授共同讲授了为期两天的光催化短期课程,将新兴的光催化方法作为有机合成中的通用工具推广给康龙化成全体员工。
然后,Corey Stephenson教授展示了光催化反应从实验室研究到工业生产领域的跨越性成果:通过与Eli Lilly等药企合作,将三氟甲基化、C–N偶联、C–C偶联等光催化反应与工业生产相结合用于药物合成。Stephenson团队设计并优化连续流反应器,克服了光催化反应放大过程中光渗透率低,反应体系传质差的问题,实现了稳定的光流体三氟甲基化公斤级反应。同时,Stephenson教授团队构建了纳升级高通量自动化微液滴平台,可在短期内完成光催化反应条件筛选。结合贝叶斯优化分析质谱参数等AI手段,大幅提升了反应开发与放大效率,为光催化的工业应用奠定了坚实基础。
最后,Corey Stephenson教授介绍了课题组最新光反应研究成果与进展。通过设计双功能Smiles试剂,将自由基过程与Smiles重排结合开发出全新的构建C–N键途径,一步完成了烯烃的胺芳基化反应。通过引入亚磺酰胺作为可调控“开关”,精准控制反应的S-与N-的选择性。全面兼容未活化烯烃、乙烯醚、苯乙烯等反应底物,反应的E/Z选择性、产率及对映选择性均获大幅提升。在机理研究方面,Stephenson教授系统阐述了光催化剂与底物间的电子转移过程,捕捉并验证了卤键复合物中间体的关键作用,结合反应动力学研究为该反应的优化提供了定量模型和理论支撑。
会后,Corey Stephenson教授在问答环节中与听众进行了热烈的讨论。
Frontiers in Synthetic and Medicinal Chemistry
--The 59th Pharmaron Virtual Lecture
Beijing, China, October 22, 2025 - Pharmaron held its 59th virtual lecture in the Frontiers of Synthetic and Medicinal Chemistry series, delivered by Prof. Corey Stephenson from the University of British Columbia in Canada. The presentation was titled “Radical Ideas: The Origins and Evolution of Visible-Light Photocatalysis.” The lecture included three areas: 1) Establishment of photoredoxcatalysis as a general method to form organic free readicals; 2) Academia-Industry collaboration driving innovation in high-throughput automated photochemical flow chemistry; 3)The design and mechanistic studies of novel photocatalytic radical reactions.
Professor Corey Stephenson started his lectureby introducing early work from his research group that was focused on the synthesis of natural products Actinophyllic acid (Laura Furst) and Gliocladin C using photocatalytic radical reactions. Employing Ru(bpy)₃Cl₂ as the catalyst under visible light irradiation, his group achieved mild construction of key C–C bonds. Furthermore, the chemoselectivitybetween C–C bond formation and C–H bond generation could be modulated by using different organic base additives. Professor Stephenson recalled his visit to Pharmaron in April 2019, during which he co-delivered a two-day short course on photoredoxcatalysis alongside Professor David MacMillan and Professor TehshikYoon. This course introduced novel photocatalytic methodologies as versatile tools in organic synthesis to all the Pharmaronstaff.
Based on the achievementsin the academia-industry collaboration, Professor Corey Stephenson thenhighlighted the research programs with Eli Lilly and other pharmaceutical partners that integrated trifluoromethylation, C–N coupling and C–C coupling protocols into drug synthesis. To overcome the limitation on light penetration, they designed photo-flow reactors, enabling introduction of CF₃ groups at kilogram-scale. These innovations directly informed the design of a nanoliter-scale high-throughput discovery platform, enabling rapid evaluation of reactivity and mechanistic hypotheses across vast chemical space. This integration of methods development with automated experimentation compresses the discovery cycle and accelerates the translation of new photochemical concepts into broadly useful synthetic tools.
Lastly, Professor Corey Stephenson presented the latest research advancements in photoreactions from his group. By designing bifunctional Smiles reagents, they integrated radical processes with Smiles rearrangement to develop a novel pathway for constructing C–N bonds, achieving aminoarylation of olefin in a single step. The introduction of sulfinamides as a tunable "switch" enabled precise control over S-versus N-selectivity. The reaction demonstrated broad compatibility with unactivatedalkenes, enol ethers, styrenes, and other substrates, while significantly improving E/Z selectivity, yield, and enantioselectivity. Mechanistic studies elucidated the electron transfer process, identified crucial halogen-bonded intermediates, and coupled kinetic data to construct a quantitative model for reaction optimization.
After the meeting, Professor Corey Stephenson had a lively discussion with the audience in the Q&A session.
来源:新浪财经
