牺牲辅助长程层状MXene/rGO气凝胶,用于电磁干扰屏蔽和隔热

B站影视 港台电影 2025-09-08 17:04 2

摘要:纳米碳材料凭借 sp² 杂化碳结构与高孔隙率等独特特性,在太阳能储能与利用领域中,展现出与相变材料(PCMs)集成应用的巨大潜力。然而,这一潜力的充分释放受限于其欠佳的光热响应能力与分级孔隙结构的缺失。本文,山东理工大学董诚副教授、杜庆洋教授联合苏州科技大学李

1成果简介

纳米碳材料凭借 sp² 杂化碳结构与高孔隙率等独特特性,在太阳能储能与利用领域中,展现出与相变材料(PCMs)集成应用的巨大潜力。然而,这一潜力的充分释放受限于其欠佳的光热响应能力与分级孔隙结构的缺失。本文,山东理工大学董诚副教授、杜庆洋教授联合苏州科技大学李昂副教授在《Composites Science and Technology》期刊发表名为“Ni@graphite carbon synergistic reinforcement sites penetrated hierarchical porous carbon boosting PCMs encapsulation and solar-thermal energy storage”的论文。本研究提出了一种动态调控策略,制备出Ni @石墨化碳渗透分级碳(Ni@C/C)结构用于封装十八醇(ODA)分子。锚定在分级碳骨架中的Ni@C活性位点能快速捕获光子

Ni0纳米颗粒(NPs)与石墨化碳的耦合增强了纳米颗粒周围的电场分布,显著提升光热性能。ODA/Ni@C/C在100 mW/cm2模拟光照条件下展现出高达94.5 %的光热转换效率。值得注意的是,ODA/Ni@C/C复合相变材料能够对环境温度变化表现出快速响应,并在较宽的温度范围内保持长时间热量释放。这项工作为纳米碳基复合相变材料的靶向设计和制备提供了理论见解和实践指导。

2图文导读

图1. (a) Schematic diagram of the synthesis process of the Ni@C/C. (b-c) SEM images of MOF (Ni,Zn)-4 (b) and Ni@C/C-4 (c), respectively. (d) EDS analysis of Ni@C/C-4. (e) TEM image of Ni@C/C-4 and particle size distribution of Ni0NPs. (f-g) HRTEM images of Ni@C/C-4.

图2. (a) XRD patterns of the carbons derived by carbonizing MOF(Ni,Zn)-4 under different temperatures for 1 min. (b-e) XRD patterns (b), Raman spectra (c), Raman characteristic peak intensity ratios (d) and XPS spectra (e) of PC and Ni@C/Cs. (f-i) C 1s (f), N 1s (g), N2 adsorption-desorption isotherms (h) and pore size distribution (i) of Ni@C/C-4.

图3. (a-c) DSC melting (a), solidification (b) curves, and corresponding enthalpies and crystallinities (c) of different phase change composites. (d) Structural models of various PCMs incorporated into Ni@C/C-4. (e-g) Radii of gyration (e), kinetic energy curves (f) and MSD curves (g) of different phase change composites. (h-j) Fr-t diagrams (h), Fr-T diagrams (i) and InΦ-Int curves (j) of ODA/Ni@C/C-4. (k) Nonisothermal 3D heat-flow charts of ODA/Ni@C/C-4.

图4. (a) UV-Vis-NIR absorption spectra of ODA, PC, ODA/Ni@C/C-4 and Ni@C/C-4, respectively. (b) Local electric field distribution around Ni0 NPs under solar irradiation. (c) Schematic illustrations of phonons and electrons transport path and photothermal conversion mechanism of Ni@C/C. (d) Schematic illustration of photothermal test. (e-f) Time-temperature evolution curves (e) and corresponding saturation temperature and photothermal storage efficiencies (f) of ODA, ODA/PC and ODA/Ni@C/C-4 under solar simulator radiation at an intensity of 100 mW/cm2.

图5. (a) Schematic illustration of thermal management strategies for both human and electronic devices based on ODA/Ni@C/C-4. (b) Schematic illustration of heat therapy mask based on ODA/Ni@C/C-4. (c-d) Time-temperature evolution curves (c) and heat release times (d) of heat therapy mask and blank mask after removal of solar irradiation. (e) Time-temperature evolution curves of the bottom of the lithium-ion battery and the lithium-ion battery covered with PCF. (f) Infrared thermal images of the battery covered with PCF under solar simulator radiation at an intensity of 100 mW/cm2.

3小结

本研究提出一种动态调控策略,成功构建出用于封装十八醇(ODA)分子的Ni@多级碳复合结构(Ni@C/C)。锚定在多级碳骨架中的Ni@C活性位点能快速捕获光子。Ni0纳米颗粒(NPs)与石墨化碳的耦合效应显著增强了纳米颗粒周围的电场分布,大幅提升了光热转换性能。Ni@C/C载体材料在整个太阳光谱范围内展现出强宽带吸收特性。当ODA分子被封装到Ni@C/C中后,其动能和扩散系数达到峰值,这使得ODA分子在Ni@C/C-4的孔隙中自由迁移,促进扩散并加速结晶过程。最终,ODA/Ni@C/C材料在100 mW/cm²光照强度下实现了94.5 %的光热转换效率。此外,该材料对环境温度变化响应迅速,在较宽的温度范围内能够持续释放热量,在热疗口罩和锂离子电池热管理系统中展现出重要的应用潜力。本研究为纳米碳基复合相变材料的靶向设计和制备提供了理论见解和实践指导。

文献:

来源:材料分析与应用

来源:石墨烯联盟

相关推荐