多平面结构照明显微镜进行快速、三维、活细胞超分辨率成像
三维结构光照显微技术(3D-SIM)在所有维度上将空间分辨率提高了一倍,广泛应用于细胞成像。然而,其时间分辨率受到限制,因为需要使用压电平台逐层移动样品进行成像,这通常会使每个体积的采集时间增加到几秒。为了解决这一局限性,Chen等人开发了三维多平面SIM(3
三维结构光照显微技术(3D-SIM)在所有维度上将空间分辨率提高了一倍,广泛应用于细胞成像。然而,其时间分辨率受到限制,因为需要使用压电平台逐层移动样品进行成像,这通常会使每个体积的采集时间增加到几秒。为了解决这一局限性,Chen等人开发了三维多平面SIM(3
在真核细胞中,DNA与蛋白质的相互作用构成了基因组功能调控的核心基础。DNA并非以裸露的线性分子形式存在,而是与组蛋白、RNA以及大量染色质相关蛋白共同构成高度组织化的三维空间结构。这种复杂的核内环境使得只有特定蛋白质能够在特定时间点直接接触DNA,参与调控基
在细胞中成千上万的RNA分子是如何准确无误地抵达各自的目的地,从而指导蛋白质的合成,调控复杂的生命活动?从疾病的发生发展到神经元的精细分化,RNA的“空间定位”(RNA localization)扮演着举足轻重的角色。然而,长期以来,一个核心挑战始终困扰着研究
空间 RNA 组织在多种细胞过程和疾病中起关键作用,但因扰动特定亚细胞区域内源性 RNA 的技术有限,其功能影响尚未充分探索。研究人员开发 CRISPR-TO 系统,利用 RNA 引导的核酸酶失活 dCas13,实现活细胞内源性 RNA 定位的可编程控制,为相
研究为解决在活哺乳动物细胞中标记和操纵蛋白质的难题,研究人员开展了细胞内蛋白质编辑技术的研究。他们结合多种技术实现对蛋白质快速位点特异性编辑,该技术有望用于多种细胞研究,意义重大。
近日,华东理工大学王义明研究员和团队在活细胞内构筑了纯人工超分子聚合物材料, 突破了合成材料与生命系统之间的界限,使得利用合成材料强化或重塑生命体的结构与功能成为可能。
近日,华东理工大学王义明研究员和团队在活细胞内构筑了纯人工超分子聚合物材料,突破了合成材料与生命系统之间的界限,使得利用合成材料强化或重塑生命体的结构与功能成为可能。
据QYResearch调研团队最新报告“全球显微镜用培养装置市场报告2024-2030”显示,预计2030年全球显微镜用培养装置市场规模将达到0.5亿美元,未来几年年复合增长率CAGR为5.7%。