摘要:热导性聚合物纳米复合膜在电池热管理(BTM)领域展现出巨大潜力。然而,由于缺乏合理的材料设计策略,制备低成本、可规模化、柔性且具有高热导性能的膜材料,以实现焦耳加热性能,始终是一项巨大挑战。本文,河海大学许航 副教授团队、台州学院郑人华 副教授、苏州大学赵燕
1成果简介
热导性聚合物纳米复合膜在电池热管理(BTM)领域展现出巨大潜力。然而,由于缺乏合理的材料设计策略,制备低成本、可规模化、柔性且具有高热导性能的膜材料,以实现焦耳加热性能,始终是一项巨大挑战。本文,河海大学许航 副教授团队、台州学院郑人华 副教授、苏州大学赵燕 教授、南昆士兰大学宋平安等在《Journal of Materials Science & Technology》期刊发表名为“Low-cost, scalable, thermally conductive polymer nanocomposite films for dual-mode battery thermal management”的论文,研究提出了一种高效方法,通过在石墨烯纳米片(GNPs)表面焊接碳纳米管(CNTs)并结合仿生层层堆叠(LBL)组装技术,突破这一长期存在的技术瓶颈。水平排列的连续GNPs层作为主要平面热传导路径,有效降低热阻。同时,次级碳纳米管网络将GNPs连接成一个集成且致密的3D热导框架。
结果显示,所制备的珍珠母仿生水性聚氨酯(WPU)纳米复合薄膜展现出卓越的热导性能(平面内热导率(λ)高达25.2 W m−1 K−1,平面外λ为1.94 W m−1 K−1),超低成本(96.5 USD/kg), 以及优异的焦耳加热性能(焦耳热响应为13.5°C/s),远超以往热管理材料。此外,与商业化产品相比,WPU纳米复合膜在锂离子电池的冷却和预热效率方面表现更优。本研究为制备高性能热管理聚合物纳米复合膜提供了有前景的解决方案,其在BTM系统中具有巨大应用潜力。
2图文导读
图1. Design and functions of nacre-inspired WPU/GNPs@CNTs nanocomposite film. (a) Schematic of thermal management nacre-inspired WPU/GNPs@CNTs nanocomposite films integrated with electric heating wires in the BTM systems. (b) Fabrication process of nacre-inspired WPU/GNPs@CNTs nanocomposite films. Digital photographs of (c) large-area WPU/1GNPs@1CNTs nanocomposite film rolling on a scroll, (d) WPU/1GNPs@1CNTs nanocomposite film folding into an origami crane, (e) unfolded WPU/1GNPs@1CNTs nanocomposite film after 20 cycles of origami folding, and (f) WPU/1GNPs@1CNTs wrapped batteries. (g) Comparison of the comprehensive performances of WPU/1GNPs@1CNTs nanocomposite film with other counterparts.
图2. Structural characterizations. TEM images of (a) GNPs, (b) CNTs, and (c) 1GNPs@1CNTs. SEM images of fracture surfaces for (d) WPU/GNPs, (e) WPU/CNTs, and (f) WPU/1GNPs@1CNTs. (g) EDS mapping of the fracture surface of WPU/1GNPs@1CNT. Raman spectra of (h) WPU/GNPs, (i) WPU/CNTs, and (j) WPU/1GNPs@1CNTs under different conditions.
图3. Thermally conductive performance. (a) In-plane λ and (b) out-of-plane λ of WPU nanocomposite films as a function of temperature. (c) In-plane λ as a function of the volume fraction of thermally conductive filler, together with theoretical prediction values by Eqs. (1)–(3). (d) Thermal transport simulation for different WPU nanocomposite films based on FES. The corresponding variation of simulated temperature (e) along the vertical direction and (f) along the horizontal direction. Comparisons of (g) in-plane λ and out-of-plane λ, (h) filler content and in-plane λ, and (i) production cost and in-plane λ of WPU/1GNPs@1CNTs with different thermally conductive materials reported in previous works.
图4. Joule heating properties. (a) Current–voltage curve of WPU/1GNPs@1CNTs nanocomposite film. (b) Temperature–time curves of the prepared WPU/1GNPs@1CNTs nanocomposite film at various operating voltages. (c) Temperature variation curves of the WPU nanocomposite films at an input voltage of 6 V. (d) Digital photographs and infrared images of the electrical heating deicing process using WPU/1GNPs@1CNTs nanocomposite film at a voltage of 6 V. (e) Infrared thermal images of the WPU nanocomposite films at different voltages. (f) Comparison of Joule-thermal response and saturated temperature between WPU/1GNPs@1CNTs and different reported Joule heating materials. (g) Comparison of applied voltage and saturated temperature between this work and previous works.
图5. Cooling effect of WPU/1GNPs@1CNTs on battery in hot environments. (a) Optical photograph of the battery integrated with WPU/1GNPs@1CNTs nanocomposite film. (b) Schematic diagram of experimental devices of WPU/1GNPs@1CNTs based BTM systems in the cooling test. Temperature difference among the bare battery, commercial thermally conductive product, and WPU/1GNPs@1CNTs wrapped battery during fast discharge at (c) 25°C and (d) 50°C. The corresponding thermal infrared images for the commercial thermally conductive product and WPU/1GNPs@1CNTs wrapped battery during fast discharge at (e) 25°C and (f) 50°C. (g) Battery charge capacity for a mobile phone via using different materials wrapped external battery at different temperatures. Simulated temperature distribution of (h) bare battery, (i) commercial thermally conductive product wrapped battery, and (j) WPU/1GNPs@1CNTs wrapped battery during fast discharge. (k) Experimental and simulated temperature change curves of bare battery, commercial thermally conductive product and WPU/1GNPs@1CNTs wrapped battery during fast discharge.
图6. Dual-effect of WPU/1GNPs@1CNTs on battery in cool environments. (a) Photo showing the setup used for testing the effect of WPU/1GNPs@1CNTs for battery in cold environments. Temperature change curves of bare battery, commercial thermally conductive product, and WPU/1GNPs@1CNTs wrapped battery at the low temperature of (b) 0°C and (c) −35°C. The corresponding thermal infrared images at (d) 0°C and (e) −35°C. (f) Heat transfer efficiency of commercial thermally conductive product and WPU/1GNPs@1CNTs. (g) Charging the degree of a mobile phone by using different materials wrapped external battery in cold environments. (h) Working principle of the dual-effect of WPU/GNPs@1CNTs on battery in cold environments.
3小结
在本研究中,通过球磨工艺成功将1D碳纳米管(CNTs)焊接在金纳米颗粒(GNPs)表面,制备出异质结构GNPs@CNTs功能性纳米填料。随后,将纳米填料通过简便且可行的层层自组装(LBL)策略引入WPU基体中,制备出仿珍珠母结构的WPU/GNPs@CNTs纳米复合薄膜。当GNPs@CNTs的质量分数为40 wt%且GNPs与CNTs的质量比为1:1时,WPU纳米复合薄膜展现出优异的柔韧性、超低成本(96.5 USD/kg)、 优异的热导性能(面内热导率λ为25.2 W m−1 K−1,面外热导率λ为1.94 W m−1 K−1),以及卓越的焦耳加热性能(焦耳热响应为13.5°C/s),远超此前报道的材料性能。此外,WPU/1GNPs@1CNTs纳米复合薄膜在电池热管理(BTM)系统中的卓越热管理性能得以展现。研究结果表明,WPU纳米复合薄膜在BTM系统中展现出强大的模式(冷却和预热)能力。因此,本研究制备的多功能WPU热调节器在实际电池系统中具有广阔的应用前景,可显著提升电池系统的安全性和性能稳定性。
文献:
来源:石墨烯联盟