郑刚教授:药物涂层球囊在经皮冠状动脉介入治疗中的应用:证据汇总与临床展望

B站影视 欧美电影 2025-10-29 21:10 1

摘要:1977年,首次使用导管球囊进行经皮冠状动脉介入治疗(PCI)[1]。在支架问世后,PCI已逐渐成为冠状动脉疾病(CAD)患者的标准血运重建策略。早期使用的是裸金属支架(BMS);随后被第一代药物洗脱支架(G1-DES)所取代,其采用不锈钢支架梁和可释放紫杉醇

1977年,首次使用导管球囊进行经皮冠状动脉介入治疗(PCI)[1]。在支架问世后,PCI已逐渐成为冠状动脉疾病(CAD)患者的标准血运重建策略。早期使用的是裸金属支架(BMS);随后被第一代药物洗脱支架(G1-DES)所取代,其采用不锈钢支架梁和可释放紫杉醇或西罗莫司的永久性聚合物组成。随后,第二代DES(G2-DES)被研发出来,其由薄壁合金支架梁和可释放西罗莫司衍生物的永久性或可吸收聚合物制成[2,3]。支架技术的显著改进降低了支架内再狭窄(ISR)的发生率(BMS、G1-DES和G2-DES分别为30%、10%和5%)[4]。然而,CAD仍然是全球发病和死亡的主要原因,每年可造成近700万人死亡[5]。因此,目前医学界仍在探究可改善长期PCI预后的新技术。药物涂层球囊(DCB)被开发作为DES的替代方案。DCB有助于血管重建,并可将抗增殖药物(主要是紫杉醇)直接输送到冠状动脉病变,而无需植入DES(图1)。由于血管壁中没有聚合物或金属材料残留,可阻止血小板黏附和活化,以及导致新生内膜增生和新动脉粥样硬化的炎症反应。因此,通过实施“介入无植入”的策略(DCB-PCI),或有助于降低血栓形成和再狭窄风险[6]。

图1 药物涂层球囊(DCB)血管成形术。

注:(1)通过导管将DCB插入冠状动脉病变;(2)膨胀后,DCB向血管壁释放抗增殖剂。(3)获得血管再生DCB已移除

此外,新发冠状动脉病变的DCB-PCI与晚期管腔扩大有关,尽管这需要在临床研究中进一步证实[7]。DCB释放的抗增殖药物作用时间较短,可以促进早期再内皮化和血管愈合,因此DCB-PCI可以促进血管正向重塑,甚至可使动脉粥样硬化斑块消退[8]。在DCB治疗的病变和血管造影正常的冠状动脉段中发现了类似的血管舒缩功能[9]。另外,DCB-PCI允许双重抗血小板治疗(DAPT)降级[10,11]。近期研究表明,与6~12个月DAPT疗程相比,1~3个月的DAPT可能会降低出血风险,且在预防PCI后主要不良心血管事件(MACE)方面的疗效相当[12]。在同一人群中,无阿司匹林抗血小板治疗正在成为DAPT的可行替代方案[13]然而,支架植入后的最佳DAPT持续时间仍在讨论中,尤其是在急性冠状动脉综合征(ACS)患者中[14]。尽管DCB-PCI后较短的DAPT似乎是合理的,且可能对高出血风险患者有益,但支持证据有限。正在进行的REC-CAGEFREE II试验表明,与标准的12个月DAPT治疗相比,ACS患者进行DAPT(阿司匹林加替格瑞洛)1个月,然后替格瑞洛单药治疗6个月,随后阿司匹林单药治疗12个月的策略,在MACE复合终点方面具有非劣效性[15]。此外,DCB-PCI后的单联抗血小板治疗被认为是极高出血风险患者的一种安全有效的治疗策略[16,17]

目前,已有大量研究探讨了单独使用DCB或与支架联合使用(即“杂交方案”)在不同病变类型[包括ISR、弥漫性病变和分叉病变(BL)]以及不同临床场景(包括糖尿病、多支血管病变或ACS患者)中的应用。

尽管一些研究表明,与支架相比,DCB的安全性并不差,但关于DCB-PCI的效率和长期结果的数据并不一致,而且大多基于具有异质性设计和主要终点的中等规模临床试验[6]。鉴于这一证据缺口,本文旨在探讨DCB相关的现有数据与未来前景。我们将阐述DCB-PCI治疗技术层面的现有证据,以及DCB在不同临床场景中的应用,包括①ISR,②BL,③小血管疾病(SVD),④大血管疾病(LVD)和⑤慢性完全闭塞性病变(CTO)。此外,本文将强调糖尿病和ACS患者的DCB使用,并给出一种仅用于DCB-PCI的算法流程。

图2 中心图

注:绿色区域,推荐关注点/理想结果;橙色区域,需考虑的注意事项;红色区域,不受欢迎结果

DCB血管成形术相关技术

1.抗增殖药物类型

冠状动脉支架植入会造成血管损伤,或导致新生内膜增生和血管负向重塑[18]。尽管支架技术不断改进,但支架植入仍不可避免地与广泛新生内膜增生风险有关。因此,抗增殖药物对于预防再狭窄至关重要[6]。目前,在大多数2G-DES中应用了西罗莫司及其衍生物。相反,大多数1G-DES和DCB则应用紫杉醇[19]西罗莫司和紫杉醇的主要特征比较,如图3所示。西罗莫司和紫杉醇均能抑制内皮祖细胞和人冠状动脉平滑肌细胞的增殖和迁移。然而,根据暴露时间的不同,它们会产生不同的生物效应[20]。由于转移率较低,西罗莫司可能需要长期使用[21]。因此,其适用于DES,在植入后可缓慢释放抗增殖药物[2]。相比之下,DCB的作用则基于抗增殖药物在血管壁中的快速释放和滞留[6]。因此,紫杉醇需要较短的暴露时间,传统上用于DCB。紫杉醇DCB的有效性和安全性在体内模型[22]和临床试验[23,24]中均有报道。目前,欧洲有13种紫杉醇DCB已注册用于冠状动脉。在美国,近期仅有一种DCB被批准用于ISR治疗[25]。

图3 西罗莫司和紫杉醇DCB主要特征的比较

近年来,探究西罗莫司及其衍生物用于DCB的临床试验不断涌现。在体内模型中,通过多孔球囊递送西罗莫司纳米颗粒后,可使组织达到治疗浓度,并降低直径狭窄百分比[26]。随后的研究证实,西罗莫司DCB在治疗ISR方面安全有效[19,27],其12个月晚期管腔损失(LLL)和临床事件发生率与紫杉醇DCB相当[19]。然而,西罗莫司的组织滞留率会因剂量和涂层配方不同而异。关于药物转移速率,结晶涂层比无定形涂层更有效[28]。在体研究显示,佐他莫司DCB具有类似疗效[29,30],且随扩张时间的延长,药物吸收量增加,新生内膜增生减少;药物浓度也随透壁深度的增加而降低[30]。总体而言,现有数据表明,与研究最为充分的紫杉醇DCB相比,西罗莫司衍生物DCB的临床疗效相当,但在血管造影结果方面,紫杉醇DCB治疗组患者的疗效更优[31-34]。鉴于不同DCB之间不存在“类别效应”,因此应针对每种DCB装置,分别探索药物剂量、配方、释放动力学与临床疗效之间的关系。

2.病变准备

为预防DCB-PCI治疗后的再狭窄,必须确保抗增殖药物能快速、均匀地释放到血管壁内[6]。微损伤已被证明可以增强局部药物吸收[35]。因此,DCB-PCI前的病变准备对于介入治疗成功至关重要。对于简单病变,建议使用球囊与血管比例为1:1的半顺应性球囊来进行预处理。对于复杂病变,应考虑高压非顺应性球囊、刻痕或切割球囊[6]。此外,如果球囊血管成形术效果不佳,例如存在严重钙化病变,可以使用旋磨、斑块切除术和冲击波碎石术进行处理6~8个月随访显示,对于DES-IRS,与标准治疗相比,采用刻痕球囊处理新生内膜可降低6~8个月随访时的节段内直径狭窄百分比(分别为 35±16.8%和40.4±21.4%,p=0.047)和血管造影显示的二元再狭窄率(分别为 18.5% 和 32%,p=0.026)[36]。同样,在DES-IRS患者中使用切割球囊和DCB可导致管腔直径增大,LLL、再狭窄和MACE发生率降低(p[37]。此外,在SVD患者中,采用普通球囊进行更充分的预扩张,与12个月随访时TLR风险降低相关[38]。因此,在进行DCB前,对病变进行充分预处理是确保治疗效果的关键。

上下滑动查看全部研究结果

3.DCB的构建

图4总结了DCB构建与药物分布之间的关联。抗增殖药物的吸附与血管壁和DCB之间的接触面积和压力有关。因此,在病变准备的同时,通过修饰DCB结构可以增强药物摄取[39]。一般来说,建议缩短给药时间并保证充足的扩张事件,以最大限度地提高DCB-PCI的疗效。

图4 不同结构DCB的药物分布

有研究提出对DCB进行结构改进,以增强抗增殖药物的输送效率。例如,微针DCB会造成微小损伤,这样无需对病变部位进行大量预处理就能促进药物输送。研究发现,与无定形涂层DCB相比,使用微针DCB时,组织中紫杉醇的浓度更高[40]。此外,由于接触压力增加,线性图案DCB向血管组织输送的药物量比传统DCB高2.3倍[41]。然而,目前还没有关于这些新型DCB技术与标准DCB进行直接比较的临床试验。

4.DCB血管成形术的影像学指导

近期研究强调了血管内超声(IVUS)在优化DCB血管成形术结果中的重要性。首项对比IVUS引导与血管造影引导DCB血管成形术的试验(ULTIMATE III)结果表明,采用IVUS引导的方案可减少LLL,表明这种方法在精确药物输送和评估血管结构和血管成形术靶病变方面具有潜在优势。

不同临床情况下的DCB

最初,实施DCB是为了协助支架植入。然而,由于技术的显著进步,DCB已成为一种独立的治疗方法,可用于治疗①ISR,②BL,③SVD,④LVD和⑤CTO。此外,DCB在糖尿病或ACS患者中的使用也引起了人们的广泛关注[6]。

1.ISR

支架植入会导致血管损伤,或可导致新生内膜增生,最终导致ISR,定义为支架冠状动脉段狭窄>50%。ISR是PCI失败的常见原因。在美国,约10%的PCI是为了治疗ISR,与治疗新发病变相比,ISR预后较差[42]。

在ISR的情况下,欧洲心脏病学会(ESC)现行指南建议重复植入DES或进行DCB-PCI(I,A)[43]。

对10项随机临床试验进行的荟萃分析显示,与DES植入相比,DCB-PCI在3年随访时与更大的TLR风险相关(HR=1.32;p=0.035)。然而,两治疗组的全因死亡率、心梗和靶病变血栓形成率相当[44]。有趣的是,在治疗DES-ISR方面,DCB-PCI不如DES植入有效(HR=1.58),但在治疗BMS-ISR方面疗效更佳(HR=0.83)另一项研究显示,DCB-PCI后1年和5年的TLR率分别为低等(4.3%)和中等(18.7%)。该研究表明,DCB长度和每支血管植入多个DES是TLR的风险预测因素(分别为HR=1.038;HR=4.7)。此外,年龄、合并症和既往旁路手术也与不良结局有关[47]。

总体而言,现有数据表明,在ISR患者中,DCB的疗效并不优于DES,这两种方法似乎同样有效且安全。因此,治疗选择应基于患者的个体特征,包括(i)既往PCI技术检查,(ii)再狭窄支架的类型,以及(iii)包括出血风险等在内的其他临床因素。在技术方面,使用血管内成像确定ISR的机制至关重要,有利于区分新发动脉粥样硬化和因扩张不足导致的支架失败。对于后者,仅使用DCB而不进行积极的后扩张,并不能确保良好的结果。考虑到再狭窄支架的类型,与DES-ISR相比,BMS-ISR更可能从DCB中获益。

2.分叉病变

BL是指冠状动脉主支(MB)病变邻近或累及边支(SB)。约20%的PCI患者存在BL。由于技术复杂性且SB血管预后不佳,其治疗效果较非分叉病变更差[48]。

目前,DCB-PCI主要有两种策略:①MB植入支架+SB使用DCB;②单纯DCB治疗。在MB植入BMS/DES的基础上,SB使用DCB治疗,均可获得良好的SB效果 [49-52]。目前,仍建议BL患者使用DES,但DCB似乎是一种有前景的工具,特别对于小直径SB。

3.小血管疾病(SVD)

SVD是指血管直径[53],约40%的PCI患者会出现SVD。与LVD相比,SVD与更高的ISR风险和更低的无事件生存率有关[54]。如图5所示,许多研究调查了DCB-PCI在治疗SVD中的作用。

图5 研究DCB血管成形术治疗SVD的试验

在SVD患者中,1年随访结果显示,与第二代DES相比,DCB在MACE和靶病变失败(TLF)风险方面无显著差异[55,56]。使用定量血流分数(QFR)进行评估显示,DCB和DES在功能结果方面没有显著差异[57]。尽管接受DCB治疗患者的血管直径狭窄率在数值上更高,但DCB在病变内LLL的风险方面优于DES(0.04 mm vs.0.17 mm;p=0.03)[59,60]。

有趣的是,DCB组没有报告完全闭塞,而DES组出现了一些闭塞[61]。考虑到长期结果,MACE、TLR和TLF的相似率在2年和3年的随访期内持续存在[56]。DCB组报告的主要出血事件发生率较低,或因DAPT持续时间较短所致[62]。总之,随机对照试验的最新证据支持在长达3年的随访中,DCB在SVD患者中的非劣效性。

4.大血管疾病(LVD)

与SVD相比,DCB在LVD(血管直径>3 mm[63])中尚未得到广泛研究。然而,初步证据表明,DCB-PCI在该患者群体中也是安全有效的。研究表明,接受DCB-PCI治疗的LVD患者的MACE和TLR发生率相对较低,在12个月时为1%~5%[64,65]。DCB组和DES组的LLL相似[66]。一项研究强调PCI后冠状动脉夹层的发生率为35%,但这并没有导致不良心血管事件的风险增加[67]。在5年随访中,与G2-DES相比,DCB-PCI与死亡率增加无关[68]。因此,在精心挑选的LVD患者(无限流夹层、残余狭窄≤30%和/或FFR>0.80)中,DCB可能是DES的非劣效替代方案(中心图)。

5.冠脉慢性完全闭塞(CTO)

CTO是指冠状动脉段完全闭塞,心肌梗死溶栓(TIMI)血流分级为0级,且闭塞持续时间≥3个月。CTO存在于约20%的冠状动脉造影中。由于ISR或支架血栓形成的技术复杂性和高风险,仅50%的CTO患者接受了介入治疗[69]。最近,DCB在CTO环境中作为DES的替代方案进行了探究。在对34例患者进行的第一项可行性和安全性研究中,79.4%的患者仅接受DCB血管成形术即可获得满意的再通疗效,从而显著改善了加拿大心血管学会心绞痛分级(p[70]。一项针对SVD患者的CTO进行PCI治疗的研究(使用DCB)显示,与非CTO相比,单纯DCB治疗CTO的靶病变血运重建率(17% vs. 3%,p=0.19)和二元再狭窄率(17% vs. 7%,p=0.32)更高,但差异无统计学意义 [71]在迄今为止规模最大的多中心观察性研究中,包括591名SVD和LVD患者,290名患者仅使用DCB或联合DES治疗。两组的再狭窄率(20.5% vs 19.7%)和三年时的MACE发生率(11.8% vs 12.0%)相似。在DCB组中,147处(50.7%)病变仅使用DCB治疗,挽救支架植入率相对较低(3.1%)。研究提示,与标准DES方法相比,DCB-PCI可能是治疗新发CTO病变的潜在无支架疗法,具有令人满意的长期结果[72]。

总之,在CTO PCI中,仅使用DCB或联合DES似乎是一种可行的策略,前提是患者无限制血流的夹层,残余狭窄可接受。由于现有证据仅限于观察性研究和注册试验,DCB在CTO PCI中的应用仍需进一步探索。目前,对比DCB和DES治疗CTO疗效的随机对照试验正在进行中,将为该复杂场景下DCB的应用提供更多证据。

6.糖尿病患者

糖尿病会导致内皮、血管和血小板功能障碍[73]。研究显示,与非糖尿病患者相比,糖尿病患者罹患CAD和心梗的风险更大[74]。此外,糖尿病与PCI后MACE和TLR的发生率较高有关[75]。因此,转诊进行PCI的糖尿病患者是一个具有挑战性的人群。目前已经对糖尿病患者进行了DCB-PCI和DES植入研究。研究显示,与DES植入相比,DCB-PCI与MACE、心脏死亡和非致死性心梗的发生率相似。接受DCB治疗的糖尿病患者的靶血管血运重建率低于接受DES治疗的患者(9.1% vs 15%;HR=0.4;p=0.036)[76]。对3项试验的荟萃分析报告了使用DCB和1G-DES后类似的PCI结果,并强调了接受DCB治疗的糖尿病患者TLR的风险较低(OR=0.51;p=0.07)[77]。此外,对DCB和DES治疗糖尿病患者ISR的对比研究显示,两者在安全性或有效性方面没有显著差异[78]总体而言,与非糖尿病患者相比,糖尿病患者进行DCB-PCI治疗的TLR风险更高(1.9% vs 4.15%;OR=2.233;p=0.026)[79]。另一项研究显示,与非糖尿病患者相比,接受DCB-PCI的糖尿病患者或具有更高的MACE风险(12.5% vs 19.1%,HR=2.049; p[80]。总之,DCB在糖尿病患者的CAD治疗方面显示出良好的前景,有望降低TLR风险。尽管如此,仍需开展更多研究对比药物球囊和G2-DES在糖尿病患者中的疗效。

7. ACS

与慢性冠状动脉综合征患者相比,接受PCI的ACS患者支架血栓形成率更高[81]。DCB-PCI不会在血管壁内留下植入物,因此与支架植入相比,血栓形成风险更低[6]。基于此,研究者探讨了DCB在ACS患者中的应用。在210名非ST段抬高型心肌梗死(NSTEMI)患者中,发现DCB-PCI不劣于支架植入术。9个月的随访显示,DCB组和支架组的TLF发生率分别为3.8%和6.6%(p=0.53),而MACE发生率分别是6.7%和14.2%(p=0.11)[81]。同样,在100名ST段抬高型心肌梗死患者(STEMI)中(其中59名仅接受DCB治疗),DCB-PCI后1年的MACE风险为5%[82]。REVELATION前瞻性随机对照试验(在120名STEMI患者)显示,在9个月随访时,DCB组的血流储备分数(FFR)不劣于DES[83]然而,在一项包括STEMI患者的前瞻性注册研究中,DES在LLL(0.51±0.59 mm vs. 0.21±0.32 mm;p[84]。研究表明,对于DES禁忌证患者,仅DCB策略或为一种潜在治疗选择。相比之下,REVELATION随机研究显示,在9个月时,DCB组的FFR不劣于DES(DCB组0.92±0.05,DES组0.91±0.06)[83]。此外,尽管总体事件数量较少,但两组患者在两年时的MACE发生率相当(5.4% vs. 1.9%,p=0.34)。总体而言,DCB-PCI在NSTEMI和STEMI患者中均展现出良好前景[85],但仍需开展更大样本量、更长随访时间的临床试验,以对比DCB与DES在ACS患者中的疗效和安全性。

上下滑动查看全部研究结果

DCB血管成形术的操作要点

中心图示显示了仅DCB血管成形术的推荐流程。与PCI期间使用的所有技术一样,患者选择对于确保手术成功至关重要。根据PCI治疗高出血风险学术研究联盟(ARC-HBR)的定义,高出血风险患者应考虑DCB,包括年龄≥75岁,同时使用口服抗凝剂、非甾体抗炎药或类固醇,既往自发性颅内出血,过去12个月内活动性恶性肿瘤,过去6个月内有自发性大出血或缺血性卒中史,过去1个月内进行过大手术,同时合并慢性肾病、贫血或血小板减少症,或计划在DAPT治疗期间进行大手术[86]。随着人口老龄化加剧,大多数接受PCI的患者都存在上述风险因素。此外,DCB也可适用于支架再狭窄高危患者,如糖尿病、多支血管病变、早发([85]。适合进行DCB的血管造影特征包括:ISR(I类推荐)、SVD(参考直径[79,87]。DCB用于LVD和CTO的可行性研究正在进行中,且初步结果良好。血管内成像有助于确定钙化的存在和分布,确定斑块负荷,并通过测量血管腔直径和病变长度,以及确定DCB着陆区来计划干预[88]。随后,可以根据血管造影和血管内成像结果选择病变准备技术。通常,建议在DCB-PCI之前使用非常规球囊(包括超高压球囊)或切割和刻痕球囊进行预扩张[6]。在一项包括252名具有临床意义的DES再狭窄患者的随机试验中,与标准治疗相比,DCB前使用刻痕球囊进行预扩张可降低再狭窄的发生率(18.5% vs 32.0%)[36]。对于严重钙化病变,应考虑更积极的钙化处理技术,包括旋磨或消蚀动脉粥样硬化切除术、血管内碎石术或准分子激光治疗,但需要注意的是,前两种动脉粥样硬化切除术装置未获批用于ISR治疗。病变预处理过程中内膜层的裂纹对于最大限度地发挥DCB的作用至关重要,因为其可提高抗增殖药物的滞留量和输送深度。病变预处理成功后(最好在血管内成像中确认),可以进行DCB递送。从血管造影和临床结果来看,紫杉醇涂层球囊和西罗莫司涂层球囊的安全性和有效性相似,DCB的选择应由术者决定[88,90]。无论DCB类型如何,转运时间、球囊扩张时间和DCB尺寸都是确保药物从DCB有效转移到血管壁的关键变量[91]近期,对分离的猪颈动脉进行的一项体外研究表明,在DCB递送30s后,DCB层仍然完好无损,而在递送3分钟后,DCB涂层的剥落清晰可见。同样,当DCB-血管直径比为1:1时,从1h到1d的平均药物流失率>80%,而当该比例为1.25:1时,药物平均流失率仅为10%。因此,成功的DCB-PCI需要满足以下条件:输送时间60s,以及血管轻微过度扩张。鉴于DCB体积相对较大,缩短传送时间或具有挑战性。如果出现传送问题,采用导管延长鞘、双导丝技术、双球囊技术或锚定球囊技术或具有一定帮助。

DCB-PCI的最后一步是判断单纯DCB是否达到最佳手术结果,或者是否需要进行补救性支架植入。与次优血管造影结果相比,最佳血管造影结果,与再ISR风险较低相关(两年时为20.3% vs 35.5%[88,93],包括TIMI 3级血流、残余狭窄

术后血管内成像也有助于评估最小管腔面积、残余斑块负荷和夹层范围。最后,功能评估可能作为一种辅助决策手段,DCB-PCI的FFR>0.80(0.75~0.85,取决于研究)与更好的临床结局相关[88]。然而,需要注意的是,最佳FFR/iFR(瞬时无波比)截止值仍然存在争议,该值定义了次优PCI结果,并应触发PCI优化[94]。

此外,由于DCB长时间扩张可能导致急性微血管损伤,PCI后FFR/iFR测量结果可能存在偏差。在解释PCI后FFR/iFR时,生理评估的位置是一个重要因素 —— 左前降支PCI治疗后iFR的绝对值平均比其他血管低0.06[95]。因此,欧洲经皮心血管干预协会共识建议,不要对术后FFR/iFR结果异常过度反应,并建议在澄清异常原因并确定是否可以通过额外操作进行优化之前,避免进行积极的术后扩张或额外的支架植入[96]。

结语

多项试验证据表明,仅DCB血管成形术是支架置入术的一种安全有效的替代治疗策略,特别是在ISR、BL和SVD患者以及接受PCI的糖尿病患者中。在LVD、CTO的PCI和ACS环境中,评估DCB的当代临床试验可能会进一步扩大该技术的适应证。DCB的研发(包括新型抗增殖药物应用和结构改进),可能会进一步降低血栓形成和再狭窄风险。目前,仍需开展更高质量的试验(纳入更多患者、随访时间更长、采用临床相关的硬终点),以比较DCB和DES治疗策略,并制定个体化PCI治疗策略指南。

参考文献

1. Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978; 1(8058): 263,

2. Htay T, Liu MW. Drug-eluting stent: a review and update. Vasc Health Risk Manag. 2005; 1(4): 263–276,

3. Tada T, Byrne RA, Simunovic I, et al. Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents: results from a registry of 18,334 patients. JACC Cardiovasc Interv. 2013; 6(12): 1267–1274, doi: 10.1016/j.jcin.2013.06.015,

4. Byrne RA, Joner M, Kastrati A. Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. Eur Heart J. 2015; 36(47): 3320–3331,

5. Ralapanawa U, Sivakanesan R. Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: a rative review. J Epidemiol Glob Health. 2021; 11(2): 169–177,

6. Jeger RV, Eccleshall S, Wan Ahmad WA, et al. Drug-Coated balloons for coronary artery disease: Third report of the Inter

national DCB Consensus Group. JACC Cardiovasc Interv. 2020; 13(12): 1391–1402,

7. Yamamoto T, Sawada T, Uzu K, et al. Possible mechanism of late lumen enlargement after treatment for de novo coronary

lesions with drug-coated balloon. Int J Cardiol. 2020; 321: 30–37,

8. Nakamura T, Funayama H, Yoshimura A, et al. Possible vascular role of increased plasma arginine vasopressin in congestive

heart failure. Int J Cardiol. 2006; 106(2): 191–195,

9. Kim S, Lee JS, Kim YH, et al. Favorable vasomotor function after drug-coated balloon-only angioplasty of de novo native

coronary artery lesions. J Clin Med. 2022; 11(2), doi: 10.3390/ jcm11020299, indexed in Pubmed: 35053994.

10. Scheller B, Speck U, Abramjuk C, et al. Paclitaxel balloon coating, a novel method for prevention and therapy of reste

nosis. Circulation. 2004; 110(7): 810–814, doi: 10.1161/01. CIR.0000138929.71660.E0, indexed in Pubmed: 15302790.

11. Bukka M, Rednam PJ, Sinha M. Drug-eluting balloon: design, technology and clinical aspects. Biomed Mater. 2018; 13(3):

032001, doi: 10.1088/1748-605X/aaa0aa, 12. Tang KS, Banerjee S, Tang G, et al. Shortened duration of dual

antiplatelet therapy following percutaneous coronary intervention: a contemporary clinical review. Interv Cardiol. 2023; 18:

e31, doi: 10.15420/icr.2023.19, indexed in Pubmed: 38213748.

13. Capranzano P, Moliterno D, Capodanno D. Aspirin-free antiplatelet strategies after percutaneous coronary interventions. Eur Heart J. 2024; 45(8): 572–585, doi: 10.1093/eurheartj/ehad876,

14. Capranzano P. One-month DAPT after acute coronary syndrome: too short or not too short? EuroIntervention. 2022;

18(6): 443–445, doi: 10.4244/EIJ-E-22-00022,

15. Gao C, Zhu B, Liu J, et al. REC-CAGEFREE II Study Group. Randomized evaluation of 5-month Ticagrelor monotherapy

after 1-month dual-antiplatelet therapy in patients with acute coronary syndrome treated with drug-coated balloons: REC

CAGEFREE II trial rationale and design. BMC Cardiovasc Disord. 2024; 24(1): 62,

16. Cortese B, Serruys PW. Single-Antiplatelet treatment after coronary angioplasty with drug-coated balloon. J Am Heart Assoc. 2023; 12(6), doi: 10.1161/JAHA.122.028413,

17. Räsänen A, Kärkkäinen JM, Eranti A, et al. Percutaneous coronary intervention with drug-coated balloon-only strategy

combined with single antiplatelet treatment in patients at high bleeding risk: Single center experience of a novel concept. Catheter Cardiovasc Interv. 2023; 101(3): 569–578, doi: 10.1002/ccd.30558,

18. Sheiban I, Carrieri L, Catuzzo B, et al. Drug-eluting stent: the emerging technique for the prevention of restenosis.

Minerva Cardioangiol. 2002; 50(5): 443–453,

19. Ali RM, Abdul Kader M, Wan Ahmad WA, et al. Treatment of Coronary Drug-Eluting Stent Restenosis by a Sirolimus- or Paclitaxel-Coated Balloon. JACC Cardiovasc Interv. 2019; 12(6): 558–566,

20. Clever YP, Cremers B, Krauss B, et al. Paclitaxel and sirolimus differentially affect growth and motility of endothelial progenitor cells and coronary artery smooth muscle cells. EuroIntervention. 2011; 7 Suppl K: K32–K42,

21. Gray WA, Granada JF. Drug-coated balloons for the prevention of vascular restenosis. Circulation. 2010; 121(24): 2672–2680,

22. Axel DI, Kunert W, Göggelmann C, et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation. 1997; 96(2): 636–645,

23. Scheller B, Vukadinovic D, Jeger R, et al. Survival after coronary revascularization with paclitaxel-coated balloons. J Am Coll Cardiol. 2020; 75(9): 1017–1028, doi: 10.1016/j.jacc.2019.11.065,

24. Kleber FX, Schulz A, Waliszewski M, et al. Local paclitaxel induces late lumen enlargement in coronary arteries after

balloon angioplasty. Clin Res Cardiol. 2015; 104(3): 217–225,

25. Yeh RW, Shlofmitz R, Moses J, et al. Paclitaxel-Coated Balloon vs Uncoated Balloon for Coronary In-Stent Restenosis:

The AGENT IDE Randomized Clinical Trial. JAMA. 2024; 331(12): 1015–1024, doi: 10.1001/jama.2024.1361,

26.Granada JF, Tellez A, Baumbach WR, et al. In vivo delivery and long-term tissue retention of nano-encapsulated sirolimus using a novel porous balloon angioplasty system. EuroIntervention. 2016; 12(6): 740–747, 27. Kumar PN, Dani S, Parikh K, et al. Sirolimus-coated balloon for

27.in-stent restenosis and de novo coronary artery disease: Results from the multicentre NANOLUTE registry. EuroIntervention. 2016;

28. Clever Y, Peters D, Calisse J, et al. Novel Sirolimus–Coated Balloon Catheter. Circ Cardiovasc Interv. 2016; 9(4), doi: 10.1161/ circinterventions.115.003543.

29. Cremers B, Toner JL, Schwartz LB, et al. Inhibition of neointimal hyperplasia with a novel zotarolimus coated balloon catheter. Clin Res Cardiol. 2012; 101(6): 469–476,

30. Kolachalama VB, Pacetti SD, Franses JW, et al. Mechanisms of tissue uptake and retention in zotarolimus-coat

ed balloon therapy. Circulation. 2013; 127(20): 2047–2055,

31. Fitzgerald S, Traynor BP, Alfonso F, et al. 9 A prospective, randomized, non-inferiority trial to determine the safety and efficacy of the biolimus A9™ drug coated balloon for the treatment of in-stent restenosis: first-in-man trial (REFORM). Heart. 2023: A8–A10, doi: 10.1136/heartjnl-2023-ics.9.

32. Ninomiya K, Serruys PW, Colombo A, et al. A prospective randomized trial comparing sirolimus-coated balloon with paclitaxelcoated balloon in de novo small vessels. JACC Cardiovasc Interv. 2023; 16(23): 2884–2896, i

33. Ahmad WA, Nuruddin AA, Abdul Kader MA, et al. Treatment of Coronary De Novo Lesions by a Sirolimus- or Paclitaxel

Coated Balloon. JACC Cardiovasc Interv. 2022; 15(7): 770–779,

34. Sedhom R, Hamed M, Elbadawi A, et al. Outcomes With Limus- vs Paclitaxel-Coated Balloons for Percutaneous Coronary

Intervention: Meta-Analysis of Randomized Controlled Trials. JACC Cardiovasc Interv. 2024; 17(13): 1533–1543,

35. Byrne RA, Joner M, Alfonso F, et al. Drug-coated balloon therapy in coronary and peripheral artery disease. Nat Rev Cardiol. 2014; 11(1): 13–23,

36. Kufner S, Joner M, Schneider S, et al. ISAR-DESIRE 4 Investigators. Neointimal modification with scoring balloon and ef

ficacy of drug-coated balloon therapy in patients with restenosis in drug-eluting coronary stents: a randomized controlled trial. JACC Cardiovasc Interv. 2017; 10(13): 1332–1340,

37. Wu H, Yu T, Fan T, et al. Efficacy and Prediction Model Construction of Drug-Coated Balloon Combined with Cutting Bal

loon Angioplasty in the Treatment of Drug-Eluting Stent In Stent Restenosis. Comput Math Methods Med. 2022; 2022,

doi: 10.1155/2022/9832622, indexed in Pubmed: 36238492.

38. Takamura TA, Kawai Y, Akita S, et al. Response to pre-dilatation with POBA can predict target lesion revascularization after DCB angioplasty for de novo small coronary artery lesions. J Int Med Res. 2022; 50(8),

39. Tzafriri AR, Muraj B, Garcia-Polite F, et al. Balloon-based drug coating delivery to the artery wall is dictated by coating micro morphology and angioplasty pressure gradients. Biomaterials. 2020; 260,

40. Lee K, Lee J, Lee SG, et al. Microneedle drug eluting balloon for enhanced drug delivery to vascular tissue. J Control Release. 2020; 321: 174–183,

41. Lee K, Lee SG, Jang I, et al. Linear Micro-patterned Drug Eluting Balloon (LMDEB) for enhanced endovascular drug delivery. Sci Rep. 2018; 8(1): 3666,

42. Shlofmitz E, Iantorno M, Waksman R. Restenosis of drugeluting stents: a new classification system based on disease

mechanism to guide treatment and state-of-the-art review. Circ Cardiovasc Interv. 2019; 12(8),

43. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. ESC Scientific Document Group, ESC Scientific Document Group. Considerations for the choice between coronary artery bypass grafting and percutaneous coronary intervention as revascularization strategies in major categories of patients with stable multivessel coronary artery disease: an accompanying article of the task force of the 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019; 40(2): 87–165,

44. Giacoppo D, Alfonso F, Xu Bo, et al. Paclitaxel-coated balloon angioplasty vs. drug-eluting stenting for the treatment of coronary in-stent restenosis: a comprehensive, collaborative, individual patient data meta-analysis of 10 randomized clinical trials (DAEDALUS study). Eur Heart J. 2020; 41(38): 3715–3728,

45. Giacoppo D, Alfonso F, Xu Bo, et al. Drug-Coated balloon angioplasty versus drug-eluting stent implantation in patients

with coronary stent restenosis. J Am Coll Cardiol. 2020; 75(21): 2664–2678,

46. Januszek R, Bil J, Gilis-Malinowska N, et al. Long-term outcomes following drug-eluting balloon or thin-strut drug-eluting stents for treatment of in-stent restenosis stratified by duration of dual antiplatelet therapy (DEB-Dragon Registry). Postepy Kardiol Interwencyjnej. 2022; 18(1): 14–26,

47. Murnaghan K, Bishop H, Sandila N, et al. Incidence and predictors of outcome in the treatment of in-stent restenosis with

drug-eluting balloons, a real-life single-centre study. J Interv 318 www.cardiologyjournal.org Cardiology Journal 2025, Vol. 32, No. 3Cardiol. 2022; 2022,

48. Louvard Y, Medina A. Definitions and classifications of bifurcation lesions and treatment. EuroIntervention. 2015; 11 Suppl V: V23– V26, doi: 10.4244/EIJV11SVA5, indexed in Pubmed: 25983165.

49. Mathey DG, Wendig I, Boxberger M, et al. Treatment of bifurcation lesions with a drug-eluting balloon: the PEPCAD V

(Paclitaxel Eluting PTCA Balloon in Coronary Artery Disease) trial. EuroIntervention. 2011; 7 Suppl K: K61–K65,

50. Worthley S, Hendriks R, Worthley M, et al. Paclitaxel-eluting balloon and everolimus-eluting stent for provisional stenting

of coronary bifurcations: 12-month results of the multicenter BIOLUX-I study. Cardiovasc Revasc Med. 2015; 16(7): 413–417,

doi: 10.1016/j.carrev.2015.07.009, indexed in Pubmed: 26346023.

51. Jing QM, Zhao X, Han YL, et al. A drug-eluting Balloon for the trEatment of coronarY bifurcatiON lesions in the side branch: a prospective multicenter ranDomized (BEYOND) clinical trial in China. Chin Med J (Engl). 2020; 133(8): 899–908

52. Kleber FX, Rittger H, Ludwig J, et al. Drug eluting balloons as stand alone procedure for coronary bifurcational lesions: results of the randomized multicenter PEPCAD-BIF trial. Clin Res Cardiol. 2016; 105(7): 613–621,

53. Sanz-Sánchez J, Chiarito M, Gill GS, et al. Small vessel coronary artery disease: rationale for standardized definition and critical appraisal of the literature. J Soc Cardiovasc Angiogr Interv. 2022; 1(5),

54. Akiyama T, Moussa I, Reimers B, et al. Angiographic and clinical outcome following coronary stenting of small vessels: a comparison with coronary stenting of large vessels. J Am Coll Cardiol. 1998; 32(6): 1610–1618,

55. Jeger RV, Farah A, Ohlow MA, et al. BASKET-SMALL 2 Investigators, BASKET-SMALL 2 Investigators. Drug-coated balloons

for small coronary artery disease (BASKET-SMALL 2): an open label randomised non-inferiority trial. Lancet. 2018; 392(10150):

849–856,

56. Tian J, Tang Yd, Qiao S, et al. RESTORE SVD China Investigators. Two-year follow-up of a randomized multicenter

study comparing a drug-coated balloon with a drug-eluting stent in native small coronary vessels: The RESTORE Small

Vessel Disease China trial. Catheter Cardiovasc Interv. 2020; 95 Suppl 1: 587–597,

57. Li L, Guan C, Meng S, et al. Short- and long-term functional results following drug-coated balloons versus drug- eluting

stents in small coronary vessels: The RESTORE quantitative flow ratio study. Int J Cardiol. 2021; 327: 45–51,

58. Fahrni G, Scheller B, Coslovsky M, et al. Drug-coated balloon versus drug-eluting stent in small coronary artery lesions: angiographic analysis from the BASKET-SMALL 2 trial. Clin Res Cardiol. 2020; 109(9): 1114–1124,

59. Cortese B, Di Palma G, Guimaraes MG, et al. Drug-Coated balloon versus drug-eluting stent for small coronary vessel dis

ease: PICCOLETO II randomized clinical trial. JACC Cardiovasc Interv. 2020; 13(24): 2840–2849,

60. Kang WC, Park SM, Jang AY, et al. DCB-ONLY Investigators. Predictors of Favorable Angiographic Outcomes After

Drug-Coated Balloon Use for de novo Small Vessel Coronary Disease (DCB-ONLY). Angiology. 2021; 72(10): 986–993,

61. Cortese B, Testa G, Rivero F, et al. Long-Term outcome of drug-coated balloon vs drug-eluting stent for small coronary vessels: PICCOLETO-II 3-year follow-up. JACC Cardiovasc Interv. 2023; 16(9): 1054–1061,

62. Jeger RV, Farah A, Ohlow MA, et al. BASKET-SMALL 2 Investigators. Long-term efficacy and safety of drug-coated balloons versus drug-eluting stents for small coronary artery disease (BASKET-SMALL 2): 3-year follow-up of a randomised, non-inferiority trial. Lancet. 2020; 396(10261): 1504–1510,

63. Gao G, Wang HY, Song Y, et al. Feasibility and safety of drugcoated balloon for treatment of coronary artery lesions in large vessel disease: a large-scale multicenter prospective study. Rev Cardiovasc Med. 2023; 24(10): 277,

64. Yu X, Ji F, Xu F, et al. Treatment of large de novo coronary lesions with paclitaxel-coated balloon only: results from a Chinese institute. Clin Res Cardiol. 2019; 108(3): 234–243,

65. Lu W, Zhu Y, Han Z, et al. Short-term outcomes from drug-coated balloon for coronary de novo lesions in large vessels. J Cardiol. 2019; 73(2): 151–155,

66. Yu X, Wang X, Ji F, et al. A non-inferiority, randomized clinical trial comparing paclitaxel-coated balloon versus new-generation drug-eluting stents on angiographic outcomes for coronary denovo lesions. Cardiovasc Drugs Ther. 2022; 36(4): 655–664,

67. Liu Yi, Zhang YJ, Deng LX, et al. 12-Month clinical results of drug-coated balloons for de novo coronary lesion in vessels exceeding 3.0 mm. Int J Cardiovasc Imaging. 2019; 35(4): 579–586,

68. Merinopoulos I, Gunawardena T, Wickramarachchi U, et al. Long-term safety of paclitaxel drug-coated balloon-only angioplasty for de novo coronary artery disease: the SPARTAN DCB study. Clin Res Cardiol. 2021; 110(2): 220–227,

69. Sanchez-Jimenez E, El-Mokdad R, Chaddad R, et al. Drug-coated balloon for the management of coronary chronic total occlusions. Rev Cardiovasc Med. 2022; 23(2): 42,

70. Köln PJ, Scheller B, Liew HB, et al. Treatment of chronic total occlusions in native coronary arteries by drug-coated balloons without stenting — A feasibility and safety study. Int J Cardiol. 2016; 225: 262–267,

71. Onishi T, Onishi Y, Kobayashi I, et al. Drug-coated balloon angioplasty for de novo small vessel disease including chronic total occlusion and bifurcation in real-world clinical practice. Cardiovasc Interv Ther. 2019; 34(2): 139–148,

72. Wang Xi, Yang X, Lu W, et al. Long-term outcomes of less drug-eluting stents by the use of drug-coated balloons in coronary chronic total occlusion intervention: A multicenter observational study. Front Cardiovasc Med. 2023; 10,

73. Creager M, Lüscher T, Cosentino F, et al. Diabetes and Vascular Disease. Circulation. 2003; 108(12): 1527–1532,

74. Norhammar A, Malmberg K, Diderholm E, et al. Diabetes mellitus: the major risk factor in unstable coronary artery disease even after consideration of the extent of coronary artery disease and benefits of revascularization. J Am Coll Cardiol. 2004; 43(4): 585–591,

75. Wilson S, Mone P, Kansakar U, et al. Diabetes and restenosis. Cardiovasc Diabetol. 2022; 21(1): 23,

76. Wöhrle J, Scheller B, Seeger J, et al. Impact of Diabetes on Outcome With Drug-Coated Balloons Versus Drug-Eluting Stents: The BASKET-SMALL 2 Trial. JACC Cardiovasc Interv. 2021; 14(16): 1789–1798,

77. Megaly M, Ali A, Abraham B, et al. Outcomes with drugcoated balloons in percutaneous coronary intervention in di

abetic patients. Cardiovasc Revasc Med. 2020; 21(1): 78–85,

78. Claessen BE, Henriques JPS, Vendrik J, et al. Paclitaxel-eluting balloon versus everolimus-eluting stent in patients with diabetes mellitus and in-stent restenosis: Insights from the randomized DARE trial. Catheter Cardiovasc Interv. 2019; 93(2): 216–221,

79. Pan L, Lu W, Han Z, et al. Clinical outcomes of drug-coated balloon in coronary patients with and without diabetes mellitus: a multicenter, propensity score study. J Diabetes Res. 2021; 2021: 5495219,

80. Zhang Z, Tan Q, Zhang J, et al. Clinical outcomes of drug-coated balloon for treatment of de novo coronary artery disease with and without diabetes. Saudi Med J. 2022; 43(12): 1347–1353,

81. Scheller B, Ohlow MA, Ewen S, et al. Bare metal or drug-eluting stent versus drug-coated balloon in non-ST-elevation myocardial infarction: the randomised PEPCAD NSTEMI trial. EuroIntervention. 2020; 15(17): 1527–1533,

82. Vos NS, Dirksen MT, Vink MA, et al. Safety and feasibility of a PAclitaxel-eluting balloon angioplasty in Primary Percutaneous coronary intervention in Amsterdam (PAPPA): one-year clinical outcome of a pilot study. EuroIntervention. 2014; 10(5): 584–590,

83. Vos NS, Fagel ND, Amoroso G, et al. Paclitaxel-Coated balloon angioplasty versus drug-eluting stent in acute myocardial infarction: the REVELATION randomized trial. JACC Cardiovasc Interv. 2019; 12(17): 1691–1699,

84. Nijhoff F, Agostoni P, Belkacemi A, et al. Primary percutaneous coronary intervention by drug-eluting balloon angioplasty: the nonrandomized fourth arm of the DEB-AMI (drug-eluting balloon in ST-segment elevation myocardial infarction) trial. Catheter Cardiovasc Interv. 2015; 86 Suppl 1: S34–S44,

85. Niehe SR, Vos NS, Van Der Schaaf RJ, et al. Two-Year clinical outcomes of the REVELATION study: sustained safety and

feasibility of paclitaxel-coated balloon angioplasty versus drug eluting stent in acute myocardial infarction. J Invasive Cardiol.

2022; 34(1): E39–E42,

86. Byrne RA, Rossello X, Coughlan JJ, et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart

J. 2023; 44(38): 3720–3826,

87. Targoński R, Gąsecka A, Luis MS, et al. Harnessing the parallax for better spatial awareness. Catheter Cardiovasc Interv.

2022; 100(5): 915–922,

88. Muramatsu T, Kozuma K, Tanabe K, et al. Task Force of the Japanese Association of Cardiovascular Intervention, Therapeutics (CVIT). Clinical expert consensus document on drug-coated balloon for coronary artery disease from the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc Interv Ther. 2023; 38(2): 166–176,

89. Cortese B, Caiazzo G, Di Palma G, et al. Comparison Between Sirolimus- and Paclitaxel-Coated Balloon for Revascularization of Coronary Arteries: The SIRPAC (SIRolimus-PAClitaxel) Study. Cardiovasc Revasc Med. 2021; 28: 1–6,90. Scheller B, Mangner N, Abdul Kader MA, et al. Combined analysis of two parallel randomized trials of sirolimus-coated

and paclitaxel-coated balloons in coronary in-stent restenosis lesions. Circ Cardiovasc Interv. 2022; 15(9),

91. Villar-Matamoros E, Stokes L, Lloret A, et al. Understanding the mechanism of drug transfer and retention of drug

coated balloons. J Cardiovasc Pharmacol Ther. 2022; 27,

92. Iwanczyk S, Skorupski WJ, Grajek S, et al. Small buddy balloon catheter technique facilitates deliverability of other balloons or stents in challenging cases. Postepy Kardiol Interwencyjnej. 2021; 17(1): 101–104,

93. Tanaka A, Latib A, Jabbour RJ, et al. Impact of angiographic result after predilatation on outcome after drug-coated balloon treatment of in-stent coronary restenosis. Am J Cardiol. 2016; 118(10): 1460–1465,

94. Escaned J, Shabbir A. Optimisation of PCI using intracoronary physiology: taking into account vessel location. EuroIntervention. 2023; 19(11): e880–e881, doi: 10.4244/EIJ-E-23-00059, indexed in Pubmed: 38105720.

95. Collet C, Johnson NP, Mizukami T, et al. Impact of Post-PCI FFR Stratified by Coronary Artery. JACC Cardiovasc Interv. 2023; 16(19): 2396–2408,

96. Escaned J, Berry C, De Bruyne B, et al. Applied coronary physiology for planning and guidance of percutaneous coronary interventions. A clinical consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the European Society of Cardiology. EuroIntervention. 2023; 19(6): 464–481

专家简介

郑刚 教授

•现任泰达国际心血管病医院特聘专家

•中国高血压联盟理事,中国心力衰竭学会委员,中国老年医学会高血压分会天津工作组副组长、中国医疗保健国际交流促进会高血压分会委员。天津医学会心血管病专业委员会委员,天津医学会老年病专业委员会常委。天津市医师协会高血压专业委员会常委,天津市医师协会老年病专业委员会委员,天津市医师协会心力衰竭专业委员,天津市医师协会心血管内科医师分会双心专业委员会委员。天津市心脏学会理事、天津市心律学会第一届委员会委员,天津市房颤中心联盟常委。天津市医药学专家协会第一届心血管专业委员会委员,天津市药理学会临床心血管药理专业委员会常委。天津市中西医结合学会心血管疾病专业委员会常委

•《中华老年心脑血管病杂志》编委,《中华临床 医师杂志》(电子版)特邀审稿专家,《中华诊断学电子杂志》审稿专家,《华夏医学》杂志副主编,《中国心血管杂志》常务编委,《中国心血管病研究》杂志第四届编委,《世界临床药物》杂志编委、《医学综述》杂志会编委、《中国医药导报》杂志编委、《中国现代医生》杂志编委、《心血管外科杂志(电子版)》审稿专家

•本人在专业期刊和心血管网发表文章948篇其中第一作者759篇,参加著书11部

•获天津市2005年度“五一劳动奖章和奖状” 和 “天津市卫生行业第二届人民满意的好医生”称号

医脉通是专业的在线医生平台,“感知世界医学脉搏,助力中国临床决策”是平台的使命。医脉通旗下拥有「临床指南」「用药参考」「医学文献王」「医知源」「e研通」「e脉播」等系列产品,全面满足医学工作者临床决策、获取新知及提升科研效率等方面的需求。

来源:医脉通心内频道

相关推荐