摘要:在A股市场中,大资金动向一直是散户投资者关注的焦点。主力资金的流入流出往往预示着股票未来的涨跌趋势。但如何从海量交易数据中快速准确地捕捉这些信号,却是一个巨大的技术挑战。
一个能实时监控3000+支股票大单异动,每日处理超10亿级数据的系统是如何设计的?
在A股市场中,大资金动向一直是散户投资者关注的焦点。主力资金的流入流出往往预示着股票未来的涨跌趋势。但如何从海量交易数据中快速准确地捕捉这些信号,却是一个巨大的技术挑战。
经过半年的研发与优化,我成功构建了一套高性能的大单监控选股系统,今天就来分享其中的技术实现细节。
效果图
单日处理10亿级交易数据,实时追踪3000+支股票主力动向,延迟控制在秒级的技术实现方案
在A股市场,主力资金的动向往往预示着个股短期走势。但要从海量Level-2数据中实时捕捉这些信号,需要解决高并发采集、海量数据存储、实时计算三大技术难题。经过半年迭代,我成功构建了千万级大单监控系统,今天分享完整实现细节。
text
数据采集层 → 缓存层 → 计算层 → 应用层 → 展示层java
// 线程池配置优化private ExecutorService createThreadPool {int threadCount = Math.min(MAX_THREADS, Runtime.getRuntime.availableProcessors * 2);return Executors.newFixedThreadPool(threadCount,new ThreadFactoryBuilder.setNameFormat("stock-monitor-pool-%d").setDaemon(true).build);}// 超时控制机制private static final long TASK_TIMEOUT_MINUTES = 5;private static final int MAX_RETRY_TIMES = 3;// 带重试机制的数据采集public List getMainMonitorWithRetry(String stockID, String money) {int retryCount = 0;while (retryCountjava
// 分层缓存策略public class CACHEManager {// 一级缓存:本地缓存(Guava Cache)private LoadingCache localCache = CacheBuilder.newBuilder.maximumSize(1000).expireAfterWrite(5, TimeUnit.MINUTES).build(new CacheLoader {@Overridepublic Object load(String key) {return redisTemplate.opsForValue.get(key);}});// 二级缓存:Redis集群@Resourceprivate RedisTemplate redisTemplate;// 数据存储优化:压缩存储public void putCompressedData(String key, Object value) {try {byte compressed = GZIPCompressor.compress(SerializationUtils.serialize(value));redisTemplate.opsForValue.set(key, compressed, 1, TimeUnit.DAYS);} catch (IOException e) {log.error("数据压缩失败", e);}}}java
// 多维度选股策略public List advancedStockSelection(SelectionCriteria criteria) {return redisTemplate.keys("StockRanking:*").parallelStream.Map(key -> key.split(":")[1]).filter(code -> filterByMarket(criteria.getMarket, code)).filter(code -> filterByPrice(criteria.getPriceRange, code)).filter(code -> filterByVolume(criteria.getVolume, code)).filter(code -> filterByMainMonitor(criteria, code)).filter(code -> filterByTechnical(criteria.getTechnical, code)).limit(criteria.getLimit).collect(Collectors.toList);}// 大单分析核心算法private boolean filterByMainMonitor(SelectionCriteria criteria, String code) {List todayData = getMainMonitorData(code, criteria.getDate);List yesterdayData = getMainMonitorData(code, getPrevDate(criteria.getDate));if (todayData == null || yesterdayData == null) return false;// 连续大单买入判断boolean consecutiveValid = checkConsecutiveBuy(todayData, criteria.getConsecutiveCount, criteria.getMoneyThreshold);// 买入卖出比例double buySellRatio = calculateBuySellRatio(todayData, criteria.getMoneyThreshold);// 净流入金额long netInflow = calculateNetInflow(todayData, criteria.getMoneyThreshold);// 与昨日对比boolean yesterdayCondition = checkYesterdayCondition(yesterdayData, criteria.getYesterdayCount, criteria.getMoneyThreshold);return consecutiveValid && buySellRatio >= criteria.getBuySellRatio &&netInflow >= criteria.getMinNetInflow &&yesterdayCondition;}vue
export default {data {return {allData: , // 全量数据visibleData: , // 可视区域数据scrollTop: 0,rowHeight: 42,visibleCount: 0}},computed: {tableHeight {return this.$refs.tableContainer ? this.$refs.tableContainer.offsetHeight : 500;},startIndex {return Math.floor(this.scrollTop / this.rowHeight);},endIndex {return Math.min(this.startIndex + this.visibleCount + 10, this.allData.length);}},mounted {this.calculateVisibleCount;this.updateVisibleData;window.addEventListener('resize', this.calculateVisibleCount);},methods: {handleScroll(event) {this.scrollTop = event.target.scrollTop;this.updateVisibleData;},updateVisibleData {this.visibleData = this.allData.slice(this.startIndex, this.endIndex);},calculateVisibleCount {this.visibleCount = Math.ceil(this.tableHeight / this.rowHeight);this.updateVisibleData;}}}javascript
// API数据压缩传输async getCompressedData(params) {const response = await axios.get('/api/large-order/data', {params,responseType: 'arraybuffer',headers: {'Accept-Encoding': 'gzip'}});// 解压数据const decompressed = await this.decompress(response.data);return JSON.parse(decompressed);},// GZIP解压decompress(arrayBuffer) {return new Promise((resolve, reject) => {const decompressor = new Zlib.Gunzip(new Uint8Array(arrayBuffer));const result = decompressor.decompress;resolve(new Textdecoder('utf-8').decode(result));});}-- 按日期分表CREATE TABLE main_monitor_20230917 (id BIGINT AUTO_INCREMENT PRIMARY KEY,stock_code VARCHAR(10) NOT NULL,timestamp DATETIME NOT NULL,volume DOUBLE NOT NULL,amount BIGINT NOT NULL,price DOUBLE NOT NULL,direction TINYINT NOT NULL,INDEX idx_stock_code (stock_code),INDEX idx_timestamp (timestamp),INDEX idx_direction (direction)) PARTITION BY Hash(stock_code) PARTITIONS 10;-- 覆盖索引优化CREATE INDEX idx_main_monitor_query ON main_monitor (stock_code, timestamp, direction, amount) INCLUDE (volume, price);-- 时间范围查询优化SELECT * FROM main_monitor WHERE stock_code = '000969' AND timestamp >= '2023-09-17 09:30:00' AND timestamp = 1000000ORDER BY timestamp DESCLIMIT 1000;# Prometheus监控配置metrics:enabled: trueendpoint: /actuator/prometheusexport:step: 1menabled: true# 关键监控指标- jvm_memory_used_bytes- http_server_requests_seconds_count- redis_commands_total- thread_pool_active_threads- custom_stock_data_processed_totaljava
// 结构化日志输出@Slf4j@Componentpublic class StockDataProcessor {public void processStockData(String stockCode, List data) {MDC.put("stockCode", stockCode);MDC.put("dataSize", String.valueOf(data.size));log.info("开始处理股票数据", kv("processTime", System.currentTimeMillis),kv("dataSize", data.size));try {// 处理逻辑log.debug("数据处理完成", kv("successCount", successCount),kv("failCount", failCount));} catch (Exception e) {log.error("数据处理异常", kv("error", e.getMessage),kv("stackTrace", ExceptionUtils.getStackTrace(e)));} finally {MDC.clear;}}}案例1:捕捉安泰科技异动
09:31:34 检测到8066万主力净流入买入次数:8次,卖出次数:1次买入卖出比例:8:1当日涨幅:5.31%,隔日继续上涨案例2:规避风险股票
通过昨日买入次数过滤,排除前期涨幅过大个股结合开盘涨幅范围(-4%到6%),避免追高风险技术栈汇总:SpringBoot、Vue、Redis、MySQL、多线程、分布式架构、性能优化
来源:AI量化实验室
免责声明:本站系转载,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本站联系,我们将在第一时间删除内容!