Ansys Zemax | 如何使用 Zenike 系数对黑盒光学系统进行建模

B站影视 内地电影 2025-05-06 14:22 1

摘要:通常在设计光学系统时,即便没有详细的处方数据(比如曲率半径、镜片参数等),也需要对其进行表示。本文将介绍如何利用 Zernike 系数来描述光学系统的波前像差,进而在无法使用 Zemax 黑匣子表面文件时,生成一个虽简单却准确的光学系统表示。如果您依赖于使用光

附件下载

联系工作人员获取附件

通常在设计光学系统时,即便没有详细的处方数据(比如曲率半径、镜片参数等),也需要对其进行表示。本文将介绍如何利用 Zernike 系数来描述光学系统的波前像差,进而在无法使用 Zemax 黑匣子表面文件时,生成一个虽简单却准确的光学系统表示。如果您依赖于使用光学系统测量的实验数据,但却无法得到该光学系统对应的处方数据,那么通常就会出现上述所提及的情况。

介绍

在某些情况下,需要对光学子系统进行表示,而无需详细掌握其处方参数。针对一阶光学计算,采用近轴透镜模型便已足够;然而,当涉及波前像差分析时,可借助 Zernike 相位系数构建光学系统所产生波前的精确数学模型。

OpticStudio 具备完善的黑盒功能特性,从功能适配性角度而言,建议将其用于当前任务需求。不过,若无法提供 Zemax 黑匣子文件,可参考并执行以下操作流程。

Zernike 相位数据

如果您想在不透露处方数据的情况下将像差数据分发给客户,则可以由 OpticStudio 生成这些 Zernike 相位系数,或者如果您正在测量没有处方数据的镜头,则可以通过干涉仪生成。根据您的干涉仪软件,您可能已经拥有OpticStudio Zernike 格式的数据,网格相位数据或.INT文件。OpticStudio可以处理所有这些,但在本文中,我们将仅使用Zernike数据。

Zernike 相位数据表示光学系统在特定场和特定波长下性能的测量。因为有关玻璃、曲率半径、非球面系数等的信息。不是 Zernike 数据的一部分,无法将 Zernike 数据缩放到不同的场或波长。因此,对于要模拟性能的每个(场、波长)对,您将需要一组 Zernike 相位数据。这些可以通过为每个(场,波长)组合提供一个单独的文件或(更有可能)为每个(场,波长)对提供单独的配置来输入OpticStudio。

有一项关键例外情景:当被建模的系统是全反射系统时,可以使用 Zernike 标准 SAG 表面来模拟给定场点的所有波长下的性能。后续一期内容将针对该特殊应用场景展开详细剖析与阐述。

起始设计

本文中使用的所有示例文件都包含在一个 zip 文件中,可以联系工作人员获取附件。我们将要看的第一个文件是“Cooke one field,one wavelength.zmx”,它基于 OpticStudio 分发的 Cooke 三元组示例文件。顾名思义,此文件基于单个(场,波长)对。

它的波前看起来像这样:

它的光斑大小是这样的:

现在,Zernike 系数是描述光学系统产生的波前误差的紧凑方法。为了产生“黑匣子”模型,我们必须首先生成具有相同一阶特性的近轴光学系统,然后用 Zernike 数据像差该近轴系统产生的波前。

我们需要的关键近轴数据是出口瞳孔位置和出口瞳孔直径。所有波前数据都是在出射瞳孔中测量的,因此我们的黑匣子系统必须具有相同的瞳孔数据。对于此文件,瞳孔数据如下所示:

出口瞳孔直径 = 10.2337 mm出口瞳孔位置 = -50.9613 mm

近轴当量

打开文件“Paraxis Equivalent.zmx”。它模拟了相同的系统,只有一个近轴透镜表面:

请注意以下几点:

它使用与原始设计相同的场和波长。其入射瞳孔直径设置为与原始系统的出射瞳孔直径相同的值。在此文件中,入射瞳孔、停止曲面和出射瞳孔都位于同一位置。近轴透镜的焦距和到图像表面的厚度均设置为等于原始文件的-1*出瞳位置。-1因子是因为EXPP是从图像到瞳孔测量的,但表面厚度是从瞳孔到图像的距离,因此需要改变符号。系统具有与原始系统相同的一阶属性。

该系统的出瞳与原始系统的出瞳大小完全相同,位置相同。为了在近轴透镜输出上添加像差,我们在近轴透镜之后使用 Zernike 标准相位表面。我们的目标是获取原始透镜的 Zernike 系数,并将它们添加到近轴等效透镜的 Zernike 表面上。

在镜头之间复制 Zernike 数据

返回“Cooke One Field One Wavelength.zmx”文件,然后单击“分析...波前...Zernike 标准系数”。OpticStudio 计算系统的波前,然后拟合一系列 Zernike 多项式。

波前的采样和 Zernike 项的数量都可以由用户通过“设置”对话框定义。确定波前是否充分采样或 Zernike 项数量的关键参数是RMS拟合误差和最大拟合误差。此设计使用采样和项数的默认参数,可提供

这意味着,当我们从 Zernike 系数重建的波前中减去实际波前时,误差约为波的百万分之一。这已经足够接近了!但是,一般来说,您可能需要调整波前采样和最大 Zernike 项才能达到可接受的拟合。

我们现在需要将 Zernike 系数数据从这个设计转移到近轴等效设计中。这可以通过打印出 Zernike 数据并重新键入来完成,但这很繁琐。对于宏来说,这是一个很好的工作。

以下名为 Zernike Readout.zpl 的宏(也包含在本文的附件中),从此镜头获取Zernike数据,并将其以Tools...在额外数据编辑器上导入数据可以读取。它经历的步骤如下:

首先,它定义了它需要的所有变量(L1-19)。

! This macro writes out the Zernike standard coefficients
! of a lens file in a format that can be directly imported
! into the Extra data Parameters of a Zernike Standard Phase surface
! First define the variables we need
! Enter whatever values are appropriate
! Use INPUT statements if you prefer
max_order = 37 # can be up to 231
sampling = 2 #sampling is 1 for 32x32, 2 for 64x64 etc
field = 1
wavelength = 1
zerntype = 1 # Get standard, not fringe or Annular coefficients
epsilon = 0 # only used for Annular Zernike coefficients
reference = 0 # reference to the chief ray
vector = 1 # use the built-in VEC1 array to store the data
output$ = "zernike.dat"
path$ = $PATHNAME # save the data in the same location as the file we are using
file$ = path$ + "\" + output$
PRINT "Writing data to ", file$

(请注意,采样和最大 Zernike 项应设置为您用于上述 Zernike 分析的值。然后,宏将获取Exit Pupil Diameter和Zernike-data(L21-27):

! Then get the Exit Pupil Diameter. Use VEC1 to store the data
GETSYSTEMDATA 1
EXPD = VEC1(13) # see the manual for the data structure
normalization_radius = EXPD/2

! Then get the Zernike coefficients up to the maximum required order
GETZERNIKE max_order, wavelength, field, sampling, vector, zerntype, epsilon, reference

请注意,Zernike 曲面的规格化半径是“Exit Pupil Diameter”的一半。然后,宏将数据打印到 Zernike 标准相位表面读取正确格式的DAT文件(L29-43):

! Then write them out to file in the format needed for the Import Tool
OUTPUT file$
FORMAT 1 INT
PRINT max_order
FORMAT 9.8
PRINT normalization_radius
FOR order = 1, max_order, 1
z_term = order + 8 # offset to the correct location in the data structure, see manual!
PRINT VEC1(z_term)
NEXT order
OUTPUT SCREEN

! End
PRINT "Program End"
END

Zernike 数据输入到ZernikeStandard Phase曲面的Parameter列中,如下所示:

将此宏放入 {Zemax}/宏文件夹中,单击编程...ZPL宏...刷新列表,以便宏显示在菜单列表中,然后运行它。它将在与原始OpticStudio文件相同的文件夹中创建一个名为“zernike.dat”的文件。如果在记事本中打开此文件,您将看到:

此文件包含 Zernike 标准相表面所需的所有数据。第一个数字是 Zernike 项的数量,然后是归一化半径,然后是每个 Zernike 项。额外数据编辑器的导入工具可以直接读取此文件。

返回到近轴等效透镜文件。在 Surface 2 属性的“导入”选项卡中浏览并打开 zernike.dat 文件:

按“导入”按钮,成功导入数据后将出现Zemax消息框:

波前错误现在显示:

和点图显示:

该文件所生成的光线追迹结果与原始文件完全一致。在本文附件的 zip 压缩包中,文件“Zernike Equivalent.zmx”呈现了已构建完成的系统模型。此外,文件“Direct Comparison.zmx”以两种不同配置形式,分别展示了同一文件的原始版本及基于 Zernike 方法的转换版本。通过这种配置方式,可以对文件两个版本进行性能比对与分析。

来源:武汉宇熠

相关推荐