Nat. Mach. Intell. 速递:大规模网络控制的高效和可扩展的强化学习
在当今高度复杂的技术环境中,如何对大规模网络系统进行高效控制已成为一大挑战。从交通信号灯优化到电力网络调度,每个场景都要求 AI 具备卓越的适应性和可扩展性。然而,传统的集中式方法往往受限于高通信成本和计算复杂度,难以满足实际需求。近期发表在 Nature M
在当今高度复杂的技术环境中,如何对大规模网络系统进行高效控制已成为一大挑战。从交通信号灯优化到电力网络调度,每个场景都要求 AI 具备卓越的适应性和可扩展性。然而,传统的集中式方法往往受限于高通信成本和计算复杂度,难以满足实际需求。近期发表在 Nature M
在配送需求不断增长的背景下,个人配送服务的大规模众包化将对配送市场产生重大影响,且众包定价涉及要素较多;这些变化意味着我们的营业部需要进行更精细化的定价管理,以适应众包人员市场。与自营人员不同,众包骑手的服务质量受到当地当时的人员可用性和成本波动的影响。为了提