多功能柔性石墨烯聚集体薄膜,用于EMI屏蔽和红外隐身等

B站影视 港台电影 2025-09-03 00:35 1

摘要:高度取向的多功能石墨烯薄膜在电导、电磁屏蔽、电加热、热管理及红外隐身等领域展现出广阔的应用前景。然而,其复杂的制备步骤和高昂成本严重制约了大规模实际应用。本文,燕山大学张瑞军 教授团队在《Materials & Design》期刊发表名为“Facile fab

1成果简介

高度取向的多功能石墨烯薄膜在电导、电磁屏蔽、电加热、热管理及红外隐身等领域展现出广阔的应用前景。然而,其复杂的制备步骤和高昂成本严重制约了大规模实际应用。本文,燕山大学张瑞军 教授团队在《Materials & Design》期刊发表名为“Facile fabrication of high-performance multi-functional ultrathin GAs films with high orientation”的论文,研究提出一种开创性且简便的低成本制备方法,可制备出高取向性、高性能的多功能柔性石墨烯聚集体(GAs)压制薄膜。通过构建取向排列的GAs泡沫结构,再进行单向机械压缩,成功制备出兼具优异柔韧性与高取向性的GAs压制薄膜。其中,厚度为48.7微米的压制薄膜表现出:电导率达5.349×10⁵ S/m,电磁屏蔽值达106.2 dB; 在仅1.7V的极低驱动电压下,焦耳热温度高达256.70°C;面内热导率达768.2W·m⁻¹·K⁻¹,红外发射率极低(3-5μm波段为0.388; 8–12μm波段为0.284),赋予其卓越的红外隐身性能。因此,这种柔性超薄GAs压延薄膜凭借其在电导率、电磁屏蔽、电加热、热管理及红外隐身等多方面的优异表现,将成为极具前景的多功能薄膜材料。

2图文导读

图1. Schematic illustration of the fabrication process of HCGAs.

图2. Comparison of the morphology, structural and compositional analysis of HCGAs foams. a Optical image, b-i Cross-sectional SEM image, J XRD patterns, k Raman spectra, l XPS survey spectra, m C1s spectra.

图3. Structural characteristic and mechanical property of HCGAs-GF-75.49. a Optical image, b Top-view SEM image, c AFM image, d Cross-sectional SEM image, e 2D SAXS pattern and corresponding azimuthal angle plot of HCGAs-GF-75.49. f flexibility property of HCGAs-GF-75.49.

图4. a Conductivity comparasion of HCGAs-GF-12.70, HCGAs-GF-25.97, HCGAs-GF-59.23 and HCGAs-GF-75.49, b stability test of HCGAs-GF-75.49, c EMI shielding performance comparasion of HCGAs-GF-12.70, HCGAs-GF-25.97, HCGAs-GF-59.23 and HCGAs-GF-75.49, d R,A and T values of HCGAs-GF-75.49. e Comparison of EMI SE of HCGAs-GF-75.49 with typical EMI shielding materials of different thicknesses (Graphene, rGO, MXene, CNT, conductive polymers, and metals, etc.) reported in recent years.

图5. a Curves of surface temperature with time at low driving voltage of 0.5–1.7 V, b Linear relationship between saturation temperature of HCGAs-GF and U2, c Temperature curve of HCGAs-GF-75.49 under a stepwise voltage from 0.5to 1.7 V, d Long-time heating performance of HCGAs-GF-75.49 at 1.7 V. e Temperature stability and repeatability of the HCGAs-GF-75.49 under ON/OFF of input voltage (1.7 V). f Practical application results of HCGAs-GF-75.49 as a electric heater g Comparison of Joule heating performance of HCGAs-GF-75.49 with other materials.

图6. a Thermal conductivity values of HCGAs-GF-12.70, HCGAs-GF-25.97, HCGAs-GF-50.23, and HCGAs-GF-75.49b Diagram of experimental setup for thermal conductive test c Heat dissipation Curve for LED d Comparison of infrared thermal images of HCGAs-GF-12.70, HCGAs-GF-25.97, HCGAs-GF-50.23, and HCGAs-GF-75.49 as LED heat dissipating substrate.

图7. a,b IR emissivity of HCGAs-GF-12.70, HCGAs-GF-25.97, HCGAs-GF-59.23 and HCGAs-GF-75.49, c IR image of a HCGAs-GF-75.49 placed on the palm of the hand. d,e Record the temperature profile of the palm and the HCGAs-GF-75.49 above it and the demonstration of the infrared stealth effect of HCGAs-GF-75.49 with a specific shape f The thermal Camouflage Performance Testing of HCGAs-GF-75.49 g-j The comparative of temperature curves between HCGAs-GF-75.49 and the heated substrate.

3小结

本文提出了一种简便策略,用于低成本制备具有高取向性的高性能多功能柔性GAs压制薄膜。主要步骤包括:通过真空辅助过滤含NG、H₂SO₄和KHSO₅的浆料实现NG取向排列;在室温下通过GAs限制取向生长形成取向排列的GAs泡沫;在450°C下对GAs泡沫进行酸去除;以及对GAs泡沫进行单向机械压缩。制备的超薄GAs压制薄膜展现出优异的柔韧性与高取向度。我们系统研究了石英片覆盖浆料表面时施加的C轴压力对最终GAs压制薄膜性能的影响,结果表明:C轴压力越高,薄膜性能越优异。厚度为48.7微米的超薄HCGAs-GF-75.49薄膜展现出高达5.349×10⁵ S/m的卓越电导率,并在X波段获得106.2 dB的优异电磁干扰抑制值。此外,HCGAs-GF-75.49可在仅1.7V的极低驱动电压下快速达到256.70°C的高温。该薄膜不仅具备卓越的导热性(768.2 W·m⁻¹·K⁻¹),更拥有极低的红外发射率(在3-5μm与8-12μm波段分别仅为0.388和0.284),因此作为红外隐形薄膜表现优异。凭借在电导率、电磁屏蔽、电加热、热传导及红外隐身等方面的卓越性能,采用新开发策略制备的高取向性GA压制薄膜有望作为高性能多功能超薄膜展现广阔应用前景。

文献:

来源:材料分析与应用

来源:石墨烯联盟

相关推荐