摘要:如图所示,ABCD是一个正方形,E、F是所在边上一点,H是对角线BD与CE的交点,按图示作图和连接,已知CE与EF相互垂直相交于E点,ED等于2AE,△EFH的面积等于26,求阴影△CDH的面积等于多少。
网友陈老师推荐的一道题:
如图所示,ABCD是一个正方形,E、F是所在边上一点,H是对角线BD与CE的交点,按图示作图和连接,已知CE与EF相互垂直相交于E点,ED等于2AE,△EFH的面积等于26,求阴影△CDH的面积等于多少。
分享一下我的思路和方法:
1)看下图,由8字相似,得
CH/EH=BH/DH=BC/DE=3/2,
→S△CDH=S正/2×2/5=S正/5 … ①
2)再看下图,连接CF,
由等高模型,S△CEF=26/2×5=65… ②
3)由一线三直角,△AEF∽△DCE,
设AE=a,则DE=2a,CD=3a,
AF=AE×2/3=2a/3。
对于这种矩形内有一个过顶点的斜△,有一个公式(我以前介绍过,可用蝴蝶模型求解,欢迎网友主页查看),今天直接用,
S△CEF=(S正-S矩OMCN)/2, ④
(9-14/3)a^2/2=65,
a^2=130/13×3=30,
S正=9a^2=270,
S△CDH=S正/5=54。
得解一一一一
题目做的有点复杂,我没有想到更好的方法,欢迎网友分享简单一点的做法。
来源:搞笑柱哥呀一点号
免责声明:本站系转载,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本站联系,我们将在第一时间删除内容!