摘要:萜类化合物作为自然界中一类具有广泛生物活性的化学实体,在药物开发、香料工业及农业等多个领域展现出巨大的应用潜力。然而,传统方法在萜类化合物的发现与产业化过程中面临效率低下、成本高昂等挑战。随着合成生物学、基因组学、人工智能及自动化技术的飞速发展,这些新兴技术为
本文刊载于《中国科学院院刊》2025年第1期专题"生物制造——回顾与展望”
池豪铭1 鄂丽影1 刘天罡1,2*
1 武汉大学 药学院
2 上海交通大学 生命科学技术学院
萜类化合物作为自然界中一类具有广泛生物活性的化学实体,在药物开发、香料工业及农业等多个领域展现出巨大的应用潜力。然而,传统方法在萜类化合物的发现与产业化过程中面临效率低下、成本高昂等挑战。随着合成生物学、基因组学、人工智能及自动化技术的飞速发展,这些新兴技术为萜类化合物的高效发现与产业化提供了新的机遇。文章综合分析了这些技术如何协同作用于萜类化合物的发掘、优化与规模化生产,并归纳了当前萜类化合物的高产现状,旨在提出一套创新策略,以加速该领域的技术革新与产业升级。
萜类化合物是由异戊二烯单元组成的有机化合物,已知结构超80000种,具有多样的生物活性。根据异戊二烯单元数量的不同,萜类化合物被分类为单萜、倍半萜、二萜、二倍半萜、三萜、四萜等,具有复杂多变的空间结构和多样的理化性质与生物学功能。例如,倍半萜青蒿素是具有抗疟活性的诺(贝尔)奖级药物,二萜紫杉醇是抗癌领域的“明星”药物,三萜角鲨烯具有保湿和渗透功效,四萜虾青素具有显著抗氧化作用。这些独特的性质使得萜类化合物在医药、香料、化妆品、食品添加剂等领域有广泛应用。
随着合成生物学的蓬勃发展,萜类化合物的研究与开发正逐步成为推动生物科技创新、加速产业升级的重要力量。然而,在这一进程中,也存在着诸多挑战。一方面,随着基因组测序技术的日益成熟,互联网上汇聚了海量的未鉴定合成酶资源,如何高效挖掘并充分利用这些宝贵资源成为亟待解决的问题。另一方面,尽管萜类化合物的高产菌株的构建已不再遥不可及,但如何实现高产菌株的规模化生产,推动其产业化制造与商业化应用,仍是一项必须面对的关键挑战。
1 萜类化合物的高效发现
在“第三次生命科学革命”的浪潮中,天然产物作为药物的重要来源,其发掘工作正经历着深刻变革。面对全球性多药耐药问题的挑战和现代药物开发的需求,传统的依赖生物样本分离提取的方法已难以满足当前需求。随着计算能力的提升、基因组层面技术的发展、微生物培养技术的成熟,以及高通量自动化平台的建立,天然产物在药物先导化合物的探索中再次受到重视,并开辟了新的机遇。
萜类化合物的高效发现,作为生物学科的关键研究方向之一,不仅能够丰富天然产物资源,更能促进相关产业的技术革新和产品升级。目前,主要通过3种方法来挖掘萜类化合物:直接从天然来源提取、激活沉默基因(簇)和异源表达。这些方法的综合应用极大地促进了萜类化合物的发现。然而,已鉴定萜类合酶和萜类化合物仍然只是自然界中庞大萜类资源的一小部分。当前研究的焦点是如何突破萜类化合物挖掘过程中的“三低”难题——低产量、低结构新颖性和低研究效率,并在此基础上发展出更高效的策略来进行挖掘(图1)。
图1 突破萜类化合物挖掘难题的策略
高效前体供给底盘提供挖掘动力
异源表达是一种通过引入外源生物合成基因(簇)到具有成熟遗传操作的生物体中,以揭示其功能的方法。这种方法解决了原始宿主不可获得和遗传操作困难的问题,被广泛应用于萜类化合物的挖掘和生物合成途径的解析,并实现了多种明星萜类分子的从头合成(表1)。选择异源宿主时需综合考虑其生长速度、代谢背景、遗传操作便利性和对目标化合物的耐受性。常见的宿主包括大肠杆菌、酵母、链霉菌、丝状真菌和模式植物烟草等。然而,受限于异源宿主的合成能力,仅能鉴定丰度高的产物,而丰度低的产物易被忽略或难以获取,这限制了对萜类合酶及其后修饰酶的全面认知。因此,改造异源宿主开发高效供给萜类前体的底盘菌株,提高产物的丰度和多样性,对新萜类化合物的挖掘具有重要意义。
表1异源表达实现明星萜类分子的从头合成
1
大肠杆菌底盘
大肠杆菌因其遗传操作简便和生长快速而备受青睐。利用“定向合成代谢”的概念,基于体外催化的结果指导体内代谢途径的改造,研究人员构建了高产异戊烯焦磷酸(IPP)和烯丙基焦磷酸(DMAPP)的大肠杆菌底盘。在此基础上,通过组合不同异戊二烯前体和萜类合酶充分释放真菌来源萜类合酶FgGS和FgMS的合成潜力,研究人员检测到50种萜类化合物,鉴定了包括3种新骨架的8个新化合物。
2
酵母底盘
酵母作为最易操作、研究透彻的真菌生物,已被广泛应用于萜类化合物的挖掘。利用增强了内源甲羟戊酸(MVA)途径的酵母底盘菌株,研究人员高通量系统挖掘了74个真菌嵌合萜类合酶,其中34个具有活性,共产生了24种二萜和二倍半萜化合物,包括2种新的二倍半萜;并在此基础上,进一步颠覆性发现了非角鲨烯来源的三萜合成全新途径。该策略还可以运用到植物的萜类合酶的挖掘中,通过在高效底盘中表征艾蒿来源的29个萜类合酶,研究人员发现了一个新倍半萜骨架和具有优秀驱虫活性的艾蒿醇(Intermedeol)。
3
丝状真菌底盘
丝状真菌因其内含子正确识别剪切和蛋白分泌能力,是真菌源萜类生物合成基因(簇)异源表达的理想宿主。在基于微生物高产底盘的天然产物创新挖掘策略的基础上,研究人员进一步提出“一把钥匙开一把锁”的研究理念,选用酿造行业中最古老、应用最广泛的米曲霉作为近源宿主挖掘了5株真菌的全部萜类合成基因簇,并构建了高效通用底盘,解决了异源表达适配性低和产量低的问题。
4
链霉菌底盘
链霉菌能够合成种类繁多、数量庞大的次级代谢产物,不但具有合成天然产物所需要的各种前体,还具备多类型产物耐受性和完善的修饰系统。链霉菌不仅可以用于萜类合酶的挖掘,还可用于细胞色素P450等后修饰酶的表征。通过删除高产链霉菌中的阿维菌素及萜类等内源代谢物相关基因,简化遗传代谢背景和避免前体竞争,研究人员在异源表达细菌来源沉默萜类合酶时,成功鉴定到13个新萜类化合物。
5
植物底盘
植物是天然药物的重要来源,具备精细分隔的细胞结构以支持膜定位外源酶的功能,同时拥有全面的翻译后修饰系统,并具有安全性高、培养成本低等特点。利用模式植物烟草,研究人员以底物喂养和建立筛选底盘2种方式鉴定了紫杉醇合成途径的关键化合物和基因,实现了关键中间体baccatin Ⅲ在烟草中的从头合成,展示了植物宿主挖掘植物来源复杂萜类生物合成基因(簇)方面的优势。
基因组与高通量协同优化挖掘策略
随着测序技术的飞速发展,全球基因组数据量激增,海量的基因组数据沉淀在互联网,亟待研究人员的挖掘,这使得基因组深度挖掘逐渐成为探索生命奥秘的一把钥匙。它能够直接从基因组数据中挖掘潜在的生物合成基因簇(BGC),以其独特的视角透视生物体内在的遗传信息,揭示微生物和植物中未被充分利用的化学多样性,扩展天然产物高效发现的深度。
然而,天然产物的高效发现并非易事,它依赖于速度与效率的双重提升。生物信息学的分析虽然提供了海量的信息,但其中不乏冗余,需要大量的实验验证来去伪存真。目前,数十万个分析归档的BGC中,仅不到0.25%进行过实验表征和产物确定,这一现状无疑制约了天然产物发现的步伐。
为了打破这一瓶颈,自动化高通量技术应运而生。它通过海量的工程化试错实验,取代传统的劳动密集型研究范式,能够快速、低成本、多循环地完成“设计—构建—测试—学习”的闭环,成为天然产物的自动化高效挖掘和高效构建高附加值化合物细胞工厂的解决方案。目前,国内外多家企业及科研院校均已建成高通量筛选平台,实现了自动化基因编辑、菌株构建和高通量菌株筛选等功能,提高了天然产物挖掘的效率。
利用基于米曲霉底盘的高通量平台,研究人员系统性挖掘了5株丝状真菌中的萜类BGC,实现了从质粒构建、基因簇重构到活性筛选的全流程自动化实验,将39个萜类BGC自下而上重构至208个突变株中,检测到185个萜类产物,将实验周期缩短至29天,在活性筛选阶段发现了具有显著抗炎活性的二倍半萜Mangicol J并揭示了其生物合成机制。在灵芝酸研究中,研究团队利用酿酒酵母高通量基因编辑平台,一次性构建了158个可能的细胞色素P450过表达质粒库,经3轮迭代菌株构建,挖掘到2种能够将Ⅰ型灵芝酸转化为Ⅱ型灵芝酸的P450,成功解析了灵芝酸生物合成途径中关键酶。该创新性萜类挖掘策略结合基因组挖掘、高效底盘和高通量平台,不仅突破了传统挖掘方法通量低的限制,更为天然产物的发现与利用开辟了新的道路。
人工智能革新挖掘方式
现代科学研究中,人工智能(AI)以其卓越的数据处理能力和模式识别技术,为天然产物的发现与研究带来革命性的突破。机器学习与深度学习的快速发展,不仅使研究人员能够高效地处理和解析海量的化学、生物学和药理学数据,还能够精确预测化合物的生物活性及潜在毒性。这一技术革新覆盖了从基因组和代谢组挖掘、结构表征到靶点和生物活性预测等多个关键环节,引领着天然产物研究向更深层次的科学探索迈进。
在基因组挖掘领域,预测BGC是发现复杂次级代谢产物微生物的关键步骤。传统的BGC预测算法,如CLUSEAN、SMURF和antiSMASH等,能够在一定程度上识别与已知生物合成途径高度相似的区域,但在面对未知的全新基因簇时力不从心。相比之下,机器学习算法在此类任务中有显著优势。例如,Moore等整合了自动化机器学习框架AutoGluon-Tabular和来自拟南芥的多组学数据,以预测参与植物次生代谢物如萜类、生物碱和酚类的BGC,鉴定了拟南芥中1220个此前功能未知的基因。又如,Liu等利用antiSMASH和DeepBGC同时分析马铃薯致病菌疮痂链霉菌的基因组,后者预测到额外的112个BGC,展示了人工智能在新型基因簇识别方面卓越的性能。
除了BGC预测外,蛋白质功能预测也是天然产物发现的重要一环。在这一领域,AlphaFold作为一款深度学习软件,成功模拟了氨基酸之间的复杂相互作用,并准确预测蛋白质的最终折叠形态。AlphaFold到AlphaFold3的迭代更新,不仅提升了预测的精度和效率,也为靶点治疗、新药研发,以及合成生物学等领域提供了重要的工具支持。值得一提的是,AlphaFold在蛋白质功能预测方面的应用,为萜类合酶的预测结构提供了高精度的快速解决方案。研究人员可以借此技术,指导进行蛋白质功能预测,从海量的蛋白数据库中迅速筛选出具有巨大潜力的候选蛋白,为后续的湿实验提供有力的指导,从而挖掘出全新的同类萜类合酶。
新天然产物功效和靶点不明,且活性实验耗时冗长,阻碍了新药研发的进程,AI助力的天然产物高通量筛选可打破这一局面。一方面,AI通过整合和学习化合物结构与毒性、活性之间的关联,通过识别相似药效团预测新化合物理化性质和生物活性。另一方面,通过AI算法可以从多层面多角度大规模预测天然产物与潜在靶点间的相互作用,加速苗头化合物的发现,促进萜类化合物高效发现走向新药研发的进程。机器学习技术,如支持向量机(SVM)、随机森林(RF)、贝叶斯等算法已被成功应用于药物发现阶段的化合物筛选环节,帮助改善药物活性、预防药物副作用,并发现新靶点。
尽管AI在药物研发领域,尤其是先导化合物的发现和优化上取得了大量进展,但在萜类化合物领域,目前成功应用案例尚少。在未来的研究中,AI有望从萜类化合物中挖掘出更多的新药候选物,为人类的健康事业贡献力量。
2 萜类化合物的产业化制造
在萜类化合物的产业化制造领域,传统方法如化学合成、植物提取及天然含目标化合物的微生物发酵,虽各有其应用,却均面临显著局限。化学合成虽能实现大量生产,但步骤繁琐、能耗高且伴随有害副产品,对环境保护和可持续发展构成挑战。植物提取受限于生长周期、地域分布及含量有限,难以满足大规模生产需求。天然微生物发酵则因产量低、提取成本高而应用受限。
随着合成生物学技术的蓬勃发展,萜类化合物的产业化制造迎来了革命性发展。科学家通过巧妙设计并改造细胞工厂,成功将可持续的生物质能转化为具有复杂化学结构和强效活性的特定萜类化合物,不仅弥补了传统制造方法的短板,更开辟出一条绿色、可持续且高效的产业化新路径。
合成生物学助力萜类化合物生物制造
在萜类化合物生物制造产业化进程中,萜类化合物细胞工厂的产品获取路径涵盖菌株构建、生产放大、分离纯化三大关键环节(图2)。这一过程的本质在于,要确保细胞工厂具备超凡的生产速率,力求达到甚至超越植物提取、化学合成等传统工艺的水准。尽管两相发酵以进行原位萃取的策略可以显著提高小分子萜类的生产水平,但为了比较容易地纯化到最终产品,萜类化合物的生产滴度至少需达到克级每升的水平(表2),这无疑对萜类化合物的产业化提出了严苛的要求。针对萜类化合物的生产速率这一核心瓶颈,科学家们开发出一系列创新策略。
图2 萜类化合物细胞工厂的产品获取路径及存在的瓶颈
1
生物合成宿主的选择
随着CRISPR 基因编辑技术的精进和全基因组序列信息的丰富,研究人员采用系统生物学方法对微生物制造工厂进行改良和创新,以实现萜类的高效合成。其中,大肠杆菌、酿酒酵母作为研究最为深入、代谢背景最为清晰的模式菌株,已实现多种萜类的高产。特别是酿酒酵母,凭借其表达高等真核生物基因的能力、单细胞组成的便捷操作性,以及实验室适应性进化赋予的可控性突变,成为萜类化合物生物制造的主力军。
2
生物合成途径的重建
酿酒酵母中萜类化合物的合成以自身天然存在的MVA途径为核心,分别向上游的乙酰辅酶A供给和下游萜烯单体DMAPP/IPP利用进行延伸。通过增强整个MVA途径,全局代谢网络调控增加或者多元化乙酰辅酶A的供给,抑制旁路的竞争代谢途径使更多的萜烯单体流向最终产物,平衡调控合成途径中的辅因子和能量供给等策略,研究人员实现了诸多萜类化合物的高产。
3
生物合成酶的工程改造
萜类合成途径下游的修饰酶是萜类结构复杂多样的关键。在原生生物体内,这些酶不仅催化特定反应,且整个途径受到复杂的机制调控,使其直接进行异源表达时,会造成生物合成步骤功能解耦,以及合成不良副产物等风险。通过酶工程实现理性设计,可以极为有效地提高酶的表达水平、催化效率和反应特异性。与此同时,可借鉴其他合成途径中的多酶级联自组装策略,实现上下游途径的强耦合,以及解决底物传递和代谢流不稳定等问题。
4
生物合成的靶向定位
萜类化合物结构的多样性极易引发细胞毒性,限制单萜的产量提升;并且,随着碳链延长造成的亲脂性的增强,三萜和四萜趋向于在特定亚细胞区室中积累。通过将整个生物合成途径定位到亚细胞器(线粒体、过氧化物酶体等),能够实现对中间毒性产物的区室化隔离,并对亚细胞器中丰富的乙酰辅酶A加以利用。此外,脂滴工程储存毒性疏水性萜类前体,内质网工程提高蛋白质的折叠合成和容纳空间,对代谢途径的精准调控都展现了极大的应用潜力。
合成生物学推进萜类化合物产业化
在这些策略的加持下,萜类化合物细胞工厂的建造变得触手可及,但仍需面临一个关键问题:如何从众多通过高效发现手段筛选出的萜类化合物中,挑选出既具备广阔市场前景,又能彰显生物制造成本优势,从而带来显著经济效益的品种?面对这一挑战,既要着眼于实验室内的技术革新,更要深入剖析市场走向与经济可行性。
一种行之有效的策略是,聚焦那些市场需求明确的萜类化合物,通过优化菌株和生产工艺,实现产量的最大化。对于大宗化合物而言,生物制造的单萜在经济效益上或许难以与现有的传统成熟工艺相媲美。然而,在更为复杂的十五碳及以上的萜类化合物领域,生物制造却展现出令人惊喜的成效(表2)。从倍半萜中的用于香精香料领域的β-法尼烯、具有抗炎舒缓活性的(–)-α-红没药醇,到二萜中龙涎香醚主要合成前体的二萜香紫苏醇,再到三萜中生物全合成注射级疫苗佐剂角鲨烯、具有多种药物特性的稀有人参皂苷,以及四萜中的类胡萝卜(如番茄红素、β-胡萝卜素、虾青素)等,众多萜类化合物已成功打通了从实验室设计到商业化生产的全链条。
表2合成生物学助力萜类化合物的产业化进程
注:目前倍半萜的产量显著高于其他萜类,因此倍半萜仅选择产量在5 g/L以上,其他萜类选择产量在1 g/L以上;相同产物的宿主仅引用产量最高的文章
另一种富有前瞻性的策略是,通过生物制造满足特定市场需求的全新化合物。在生物制造航空燃料的探索中,研究人员利用细胞工厂快速合成了17个经过理论计算筛选过的倍半萜化合物,并对这些高能液体燃料候选分析进行了系统性的高效评估。这种将细胞工厂与高效发现策略相结合的方法,为拓展到其他细分领域提供了无限可能。
合成生物学与化学合成的深度融合
尽管合成生物学在萜类化合物生物合成方面取得了显著进展,但仍有部分高活性的植物源萜类化合物(如紫杉醇)的生物合成途径难以挖掘,这在一定程度上制约了其产业化进程。然而,随着对生物合成和化学合成认识的不断加深,科学家们开创性地提出了结合两者优势的新策略。
这一策略利用现有的天然产物类似物和最低限度的化学催化,来合成特定的天然产物,有效解决了从复杂天然产物中经济地生产候选药物的难题。美国Amyris公司在酿酒酵母中高产青蒿素前体青蒿酸的实践,就是这一策略的成功典范。遗憾的是,由于市场需求变化等外部因素,Amyris公司的商业化进程遭遇挫折,但这一思路无疑为萜类化合物的产业化开辟了全新路径。
在此基础上,科学家们进一步拓展了那些只停留在高产阶段,而无法进入产业化阶段的化合物的全新运用,实现了其高附加值提升。具有显著抗肾癌活性的Englerin A的大量生产难题,通过微生物合成的愈创木酚-6,10(14)-二烯作为关键前体实现化学半合成得到解决。具有葡萄柚香味的高附加值产品圆柚酮,利用在酿酒酵母体内高产的倍半萜化合物瓦伦烯一步化学合成,实现了产业化的新途径。此外,还能利用类似于化学合成式发散探索的新策略,以生物制造的香叶基香叶醇为出发底物,通过化学合成创制抗溃疡药物替普瑞酮、骨质疏松症治疗药物Menaquinone-4,以及营养品α-生育三烯酚的全新合成途径。
合成生物学在化学半合成领域的应用,不仅实现了复杂天然产物的创制,更能对传统工业生产模式产生颠覆性影响。以维生素E为例,其化学结构中包含萜类结构单元,传统上依赖化学法合成。而现在通过微生物发酵合成的法尼烯作为前体,化学合成获得维生素E的关键中间体异植物醇,并最终合成维生素E。这一创新性技术的突破,打破了国外长期垄断的化学全合成技术,标志着合成生物学在天然产物合成领域的重大进展。
细胞工厂规模化放大的障碍
在萜类化合物的高效发现与产业化制造领域,上游菌株构建技术已实现了丰富的技术储备,并取得了显著进展。然而,在下游环节,特别是规模化生产与分离纯化方面,仍面临重大挑战,成为制约产业发展的瓶颈(图2)。
1
规模化放大的困境
从实验室的摇瓶发酵(仅50 mL)到工厂规模的吨级生产,萜类化合物的产业化之路存在大量挑战。这一过程中,需要依次经历实验室小试(约5 L)、中试(接近工业化生产的500 L)等多个环节,直至最终的规模化放大。这些环节中,需要依次摸索最佳的培养基、温度、pH值、溶氧控制、乙醇积累、补料策略等条件,以确保工艺在放大过程中的稳定性和可重复性。然而,发酵罐的实时监测和调控任务繁重且高度依赖工作人员经验。在此背景下,人工智能技术的引入能够加速确认调控操作与菌株代谢特性之间的复杂关系,推进产物合成,从而在规模化放大过程中保持产量和质量一致性。
2
分离纯化的难题
虽然加入有机相进行两相发酵可显著提高产量,但易在发酵过程中形成稳定的乳化现象,使有机相和水相分离困难,造成总产量的损失,以及精制困难。开发与发酵过程集成的在线油分离技术,从而允许如细胞重复使用等策略或许能成为破乳的关键。完成破乳后,还需进行纯化。当前,工业上普遍采用高能耗的精馏塔进行分离,但该技术依赖大型设备,与实验室规模脱节。因此,加强科研机构与企业之间的紧密合作,深化产学研融合,成为推动技术创新与产业升级的必然选择。同时,探索更多高效分离策略也显得尤为重要,如超临界流体萃取技术的开发及新型固相萃取试剂的研究等,这些新技术和新方法都有望为萜类化合物的分离纯化提供全新的解决方案。
3 结语
随着合成生物学技术的日新月异,萜类化合物这一自然界中极具潜力的化学宝藏,其高效发现与产业化制造正步入一个崭新的发展阶段。在发现方面,创新策略,如高效前体供给底盘开发、基因组与高通量技术协同优化及人工智能应用,加速了萜类化合物的筛选优化,为产业化打下坚实基础。在制造方面,尽管高效细胞工厂的构建已不再成为制约产业发展的瓶颈,但在产物的选择、规模化放大、分离提纯等方面,仍面临诸多挑战。如何进一步优化生产工艺,提高产物纯度与产量,降低成本,是当前亟待解决的问题。
然而,在萜类化合物产业化制造快速发展的同时,也必须清醒地认识到,目前萜类化合物的研究更集中于学术界,众多萜烯的实际应用价值未得到发挥,因此推进其产业化至关重要。为此需要采取一系列措施,以推动学术实现产业转化。
1. 鼓励以市场为导向的应用型科研,建立科研院所与企业的长期合作关系,调整研究方向以满足市场需求,实现资源共享与优势互补。
2. 引入跨学科教育模式,培养既懂科研又懂市场的复合型人才,促进产学研融合,消除科研与市场间的信息障碍。
3. 提供技术和资金支持,制定利于成果转化的政策,规范行业发展。
4. 通过技术交流会、展览、论坛及现代媒体,加大成果推广力度,提升公众认知和市场认可度。
与此同时,对企业而言,萜类化合物的产业化进程仍面临法律法规不完善、知识产权保护不足等挑战。
1. 加快政策革新,推动完善生物制造产品的法律法规,精简商品化审批流程,以促进产业的快速发展,提高企业的创新积极性。
2. 进一步强化知识产权保护体系,加大对技术模仿与侵权行为的打击力度,保护创新者的合法权益,为创新者营造公平、公正的竞争环境。
展望未来,合成生物学技术将持续推动萜类化合物产业化制造迈向更广阔的前景。通过持续的创新突破,将进一步降低成本、提高产量与纯度,满足市场需求,推动产业升级。期待看到更多成功案例的涌现,为生物经济注入新活力,引领科技新时代。
池豪铭 武汉大学药学院博士研究生。主要研究领域为天然产物高效合成及微生物药物和化学营养物质的创新。
刘天罡 上海交通大学生命科学技术学院特聘教授。主要研究领域为天然产物高效合成,天然产物高效挖掘,微生物与人体互作。
文章源自:池豪铭, 鄂丽影, 刘天罡. 萜类化合物高效发现与产业化制造. 中国科学院院刊, 2025, 40(1): 47-66.
DOI: 10.16418/j.issn.1000-3045.20241130005.
来源:科学参考