随着当前大语言模型的广泛应用和推理时扩展的新范式的崛起,如何实现高效的大规模推理成为了一个巨大挑战。特别是在语言模型的推理阶段,传统注意力机制中的键值缓存(KV Cache)会随着批处理大小和序列长度线性增长,俨然成为制约大语言模型规模化应用和推理时扩展的「内存杀手」。虽然业界已有 MQA、GQA、MLA 等多种注意力机制变体试图解决这一问题,但这些方案要么难以在严格的显存限制下保持理想性能,要么在模型结构上引入额外复杂度,带来巨大的工程挑战和生态兼容性问题。在近期由阶跃星辰、清华大学等机构完成的论文《Multi-matrix Factorization Attention》中,研究人员提出新型注意力机制架构 —— 多矩阵分解注意力(MFA)及其变体 MFA-Key-Reuse,在大幅降低语言模型推理成本的同时,还实现了性能的显著提升。摘要:随着当前大语言模型的广泛应用和推理时扩展的新范式的崛起,如何实现高效的大规模推理成为了一个巨大挑战。特别是在语言模型的推理阶段,传统注意力机制中的键值缓存(KV Cache)会随着批处理大小和序列长度线性增长,俨然成为制约大语言模型规模化应用和推理时扩展的「内
来源:七星汽车科技人
免责声明:本站系转载,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本站联系,我们将在第一时间删除内容!