面试官:大模型所谓的参数是什么?大模型为什么需要训练?

B站影视 2024-12-15 22:20 2

摘要:我们知道大模型是训练出来的,那么哪些训练数据都跑哪去了,大模型训练的过程中都干了什么? 为什么大模型需要训练?‍‍

“ 大模型的本质是机器学习,机器学习的本质就是一种数学模型。”

我们经常能听到这样的说法,某某大模型有多少参数,某某大模型参数量又提升了,这里所说的参数到底是什么?

我们知道大模型是训练出来的,那么哪些训练数据都跑哪去了,大模型训练的过程中都干了什么? 为什么大模型需要训练?‍‍

我们知道大模型的发展从刚开始的几百个参数,到现在的上千亿个参数,比如GPT-3就有一千七百多亿个参数。

而随着参数数量的提升,大模型的功能也变得越来越强大,特别是现在GPT-4o的出现,大模型已经可以和人类进行正常的语音和视频交流。‍‍‍‍‍‍‍‍‍

但很多人都不知道这个参数到底是个什么东西?‍‍‍‍‍‍‍‍‍

首先,我们要明白一件事,不要把训练数据当作参数;训练数据是训练数据,参数是参数。‍‍‍‍‍‍‍‍

大模型是基于机器学习模型,通过大量数据训练出来的模型,所以叫做大模型。‍‍‍‍‍‍‍‍

而现在主流的大模型都是基于神经网络模型构建的模型,不论是基于卷积神经网络(CNN),还是循环神经网络(RNN),亦或者是Transformer神经网络等。‍‍‍‍‍‍‍‍

但神经网络模型只是机器学习模型中的一个分类,其它还包括支持向量机,决策树,回归模型等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而这里说的大模型的参数,是基于神经网络模型而构建的参数。我们知道,神经网络模型有很多层,每一层都有很多个神经元,而每一层又需要进行连接;

这就是大模型参数的由来,比如权重与偏置,就是每个神经元都有的参数。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

一般情况下,大模型的参数是在网络架构时就设定好的,参数数量一般不会发生变化;但也有例外情况,比如动态神经网络就会对参数数量进行动态调整。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

我们都知道,训练大模型需要准备大量的数据,然后对模型进行训练。那么这个训练的过程到底是干了什么,哪些训练数据的作用是什么?‍‍‍‍‍‍‍‍

其实说白了,大模型训练的本质就是调整参数。

在前面我们说了,大模型有很多个参数,现在的大模型基本上参数都是以亿为单位;当然,参数的数量根据大模型的架构而有所不同。‍‍‍

训练的过程其实就是把训练数据输入到大模型中,然后模型根据这些数据对参数进行调整的过程,以求达到一个最优解。

如果把神经网络看作一个黑盒,那么我们输入数据,经过神经网络这个黑盒处理之后,再输出我们的数据。

如下图所示,就是一个简单的神经网络模型图:

神经网络单层模型

类似于人体有无数个神经元组成,而从数学理论来说,更多的神经元与更复杂的神经网络架构,就能够进行更加复杂的数据处理。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

所以,就有了多层的神经网络架构,如下图所示,神经网络由多个神经层组成。如GPT-3就有96层。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

多层神经网络

这就是神经网络的模型架构。‍‍‍‍‍‍‍

训练开始时,需要把训练数据输入到模型中,具体的输入方式这里暂不讨论,我们只需要知道训练数据需要输入到神经网络中即可。‍‍‍‍‍‍‍

因为模型有多个神经层,所以训练数据从输入层进入大模型之后;需要在模型的多个神经层之间进行流转,而这个过程术语叫做正向传播。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

数据从输入层,一层一层的传播到输出层,然后输出结果;但由于大模型刚开始就像一个小学生,所以它输出的结果往往不尽人意。‍‍‍‍‍‍‍‍

所以,为了解决这个问题,大模型的输出结果需要跟实际结果进行匹配,术语叫做计算损失差,损失差越大说明输出结果越差。‍‍‍‍‍‍‍‍‍‍‍‍‍

而有了损失差,说明当前的模型是有问题的;所以就需要对模型进行调整,这就是所谓的反向传播。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

意思就是,模型把输出的结果再次输入到模型中,然后模型根据这个结果,使用某种算法对模型中的参数进行调整,比如不同神经元的权重等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而调整参数的这个东西叫做优化器。

模型训练流程

然后,模型根据这个原理,使用训练数据一次一次的输入,然后一次一次的对参数进行调整。最后达到一个最优解,也就是训练好的大模型。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这也是为什么大模型要经过很多轮的训练,才能达到比较满意的效果。‍‍‍‍‍‍‍‍‍‍‍

当然,大模型的神经层并不是越多越好,训练数据也不是越多越好,有时候更多的参数和训练数据训练出来的结果,可能还没有少一点的效果好。‍‍‍‍‍‍‍‍‍‍‍‍

而这也有专门的评估函数对训练结果进行评估。‍

以上就是大模型训练的原理。

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

来源:Java码农之路

相关推荐