分享:硅、铬掺杂对TiAlN基涂层微观结构及摩擦学性能的影响

B站影视 2024-12-12 11:18 9

摘要:由摩擦磨损带来的能源消耗和材料破坏造成了巨大的经济损失,因此寻求耐磨减摩材料以及探索材料防护技术成为了研究焦点。渗氮、渗碳、喷丸、制备涂层、电镀等表面改性技术可以通过改善工件的表面状态来提升其摩擦学性能[1-2]。采用物理气相沉积技术[3-5]制备的TiN涂层

0. 引言

由摩擦磨损带来的能源消耗和材料破坏造成了巨大的经济损失,因此寻求耐磨减摩材料以及探索材料防护技术成为了研究焦点。渗氮、渗碳、喷丸、制备涂层、电镀等表面改性技术可以通过改善工件的表面状态来提升其摩擦学性能[1-2]。采用物理气相沉积技术[3-5]制备的TiN涂层能够提升刀具以及零部件表面的硬度和耐磨性,但是该涂层在650 ℃时会发生氧化形成疏松的TiO2而失效[6-7]。向TiN中掺杂铝原子形成(Ti,Al)N固溶体后,涂层发生氧化而失效的温度提升至800 ℃,此外掺杂铝还能形成固溶强化作用,进一步提升涂层的硬度和耐磨性。但是,TiAlN涂层的综合性能受掺杂铝含量的影响:当铝原子分数小于67%时,(Ti,Al)N固溶体以立方结构c-(Ti,Al)N形式存在,涂层具有优异的抗氧化性和耐磨性;当铝原子掺杂含量超过其在c-TiN晶格中的固溶极限(铝原子分数大于67%)时,会析出密排六方h-AlN相,涂层的综合性能急剧下降[8-10]。此外,由于高温合金等难加工材料高速干切削时的温度高于1 000 ℃,切削刀具表面TiAlN涂层已不能满足需求[11-12]。综上,有必要开展TiAlN涂层改性研究,进一步提高其性能以满足应用要求。为此,研究人员掺杂第4种元素(银[13]、钒[14]、钼[15]、硅[16-19]、碳[20]、铬[21-22])制备了四元TiAlXN涂层,其中硅、铬元素掺杂分别因可形成具有优异性能的(Ti,Al)N/a-SiNx(a代表非晶)复合结构以及可有效提高涂层硬度和抗氧化性而得到广泛应用。

为了进一步完善TiAlN基涂层的研究体系,拓宽其应用,作者以Ti0.5Al0.4Cr0.1、Ti0.5Al0.4Si0.1为靶材,采用电弧离子镀技术制备了掺杂相同含量硅和铬的TiAlSiN涂层和TiAlCrN涂层,研究了掺硅或铬涂层的微观结构、力学性能和摩擦学性能,并与TiAlN涂层进行对比。

1. 试样制备与试验方法

试验用靶材为纯度99.99%的Ti0.5Al0.4Cr0.1靶、Ti0.5Al0.4Si0.1靶、Ti0.5Al0.5靶、钛靶,均为市售,基体材料为单晶硅片(厚度0.5 mm)和316L不锈钢(尺寸25 mm×25 mm×3 mm)。利用Oerlikon Balzers公司RCS沉积系统采用电弧离子镀技术在基体上制备TiAlN、TiAlSiN以及TiAlCrN涂层。其中:316L不锈钢基体上的涂层用于硬度、结合强度以及摩擦学性能测试,单晶硅片基体上的涂层用于表面、截面形貌观察和微观结构分析。沉积前,将基体依次置于丙酮、无水乙醇中超声振荡15 min,去离子水清洗5 min后吹干,然后固定在转炉架上,再置于镀膜腔室内自转。镀膜腔室抽真空至1×10−3 Pa,将基体加热到450 ℃,通入流量为200 cm3·s−1、纯度为99.99%的氩气,利用钛靶在−700 V偏压下刻蚀基体10 min,去除基体表面的氧化皮,同时在基体表面形成伪扩散层以提高涂层在基体上的附着强度;关闭氩气,通入流量为200 cm3·s−1、纯度为99.99%的氮气,在工作电流为120 A下利用钛靶沉积TiN打底层,基体偏压为−100 V,再在120 A工作电流下利用Ti0.5Al0.5靶在TiN层上沉积TiAlN过渡层,以缓和由TiN打底层和表层之间的热膨胀系数差过大带来的内应力;最后,在Ti0.5Al0.4Si0.1靶、Ti0.5Al0.4Cr0.1靶中接入160 A电流,分别沉积TiAlSiN涂层和TiAlCrN涂层。对比涂层为采用Ti0.5Al0.5靶在160 A工作电流下沉积的TiAlN涂层。由于Ti0.5Al0.4Si0.1靶和Ti0.5Al0.4Cr0.1靶中硅、铬原子分数分别为10%,近似认为TiAlN涂层中的元素掺杂含量相同。

采用FEI inspect f50型场发射扫描电镜(FE-SEM)观察涂层的表面、截面形貌,选用FE-SEM自带的能谱仪(EDS)对涂层的微区成分进行分析。使用D/max 2200PC型X射线衍射仪(XRD)分析涂层的物相组成,选用铜靶,工作电流为40 mA,工作电压为40 kV,扫描速率为4 (°)·min−1,扫描范围为20°~70°。采用ESCALAB 250Xi型X射线光电子能谱仪(XPS)测试元素化学键合状态,激发源采用铝Kα射线,工作电压为12.5 kV,使用284.8 eV的碳峰(C1s)进行核电矫正。采用Hysitron TI-950型纳米压痕仪进行纳米压痕试验以获得涂层的纳米硬度和弹性模量,选用连续刚度压入模式,载荷为15 mN,压入深度不超过涂层厚度的1/10。采用WS-2005型划痕仪测试涂层的结合力,加载速率为20 N·min−1,最大载荷为100 N,划痕长度为4 mm;采用曲率法根据Stoney公式计算内应力[23]。使用UMT-3型摩擦磨损试验机测试涂层在大气环境中的摩擦学性能,摩擦方式为球-盘式,选用直径为9.5 mm的钢球作为对磨件,试验载荷为6 N,转速为200 r·min−1,磨斑直径为10 mm,磨损时间为10 min。采用白光干涉仪测涂层的磨痕尺寸,计算磨损率,具体公式如下:

式中:W为磨损率;V为磨损体积;F为法向载荷;S为滑动距离。

2. 试验结果与讨论

2.1 表面与截面微观形貌

由图1可见:不同涂层表面都有不规则的液滴、针孔特征,液滴是靶材喷溅所致,针孔是液滴周边的涂层竞相生长或者阴影效应所致,TiAlN涂层和TiAlCrN涂层中液滴和针孔的尺寸大于TiAlSiN涂层;不同涂层均结构致密,与基体之间结合紧密,无明显微裂纹,厚度均为3 μm左右;涂层晶粒均呈柱状晶生长,掺硅或铬后涂层的晶粒小于TiAlN涂层,且掺硅涂层的晶粒最小。硅、铬原子的加入增加了涂层生长过程中的异质核,使得涂层晶粒尺寸降低,而硅元素在立方TiN(c-TiN)晶格中的固溶度较铬元素低,所以TiAlSiN涂层具有更小的晶粒尺寸[24]。此外,a-SiNx与TiN之间较高的混合焓,会驱使TiAlSiN涂层在生长过程中发生相分离,形成特殊的纳米复合(Ti,Al)N/a-SiNx结构,而a-SiNx相会阻碍晶粒生长,也会使得TiAlSiN涂层晶粒细化[25]。

图 1 不同涂层的表面形貌和截面形貌

Figure 1. Surface (a–c) and cross-sectional (d–f) morphology of different coatings: (a, d) TiAlN coating; (b, e) TiAlSiN coating and (c, f) TiAlCrN coating

2.2 物相组成和微观结构

由表1可见:各涂层的氮平均原子分数均为50%左右。TiAlN涂层中钛与铝的原子比为55∶45,高于靶材中的50∶50;TiAlSiN涂层中钛、铝、硅的原子比为52∶40∶8,与靶材成分相比钛元素含量上升,硅元素含量下降;TiAlCrN涂层中钛、铝、铬的原子比为51∶37∶12,钛、铬元素含量较靶材上升,铝元素含量下降。上述现象出现的原因可归结为2个方面:一方面,铝、硅原子半径较小,在沉积过程中散射损失较大;另一方面,吉布斯自由能低的元素会优先形成氮化物被蒸发[26]。二者的共同作用,导致了铝、铬、硅含量的变化。

表 1 不同涂层的微区EDS分析结果

Table 1. Micro-area EDS analysis results of different coatings

由图2可以看出:TiAlN涂层的XRD谱中出现了3个衍射峰,其衍射峰位置对比标准c-TiN(JCPDF No. 38-1420)衍射峰向大角度方向偏移,这是原子半径较小的铝原子固溶到c-TiN晶格中形成(Ti,Al)N所致[27-28];TiAlSiN和TiAlCrN涂层的XRD谱与TiAlN涂层相近,未观察到a-SiNx和CrN相,说明硅原子和铬原子以固溶或者非晶形式存在;TiAlSiN和TiAlCrN涂层的衍射峰强度均低于TiAlN涂层,衍射峰半高宽均大于TiAlN涂层,其中TiAlSiN涂层的衍射峰强度最低,半高宽最宽。衍射峰强度越低,半高宽越宽,晶粒尺寸越小[29]。可知,TiAlSiN涂层的晶粒尺寸最小,这与SEM截面形貌观察的结果一致。不同涂层均呈现较强的(200)面择优取向,这与涂层生长过程中的表面能和应变能有关[30]。

图 2 不同涂层的XRD谱

Figure 2. XRD patterns of different coatings

由图3可以看出:3种涂层的Ti2p谱由2个不对称的峰组成,分别对应Ti2p1/2和Ti2p3/2,通过分峰拟合后可以分为结合能位于455.86 eV和461.50 eV的峰以及457.76 eV和463.19 eV的峰,分别对应TiN以及TiN的卫星峰(TiN-sat)[31],这说明涂层中的钛元素以TiN形式存在;Al2p谱均由单峰组成,位于74.12 eV结合能处,该峰对应AlN[32];N1s谱中均观察到位于397.67 eV和396.82 eV结合能处的TiN和AlN峰,并且TiAlSiN涂层和TiAlCrN涂层还分别观察到了位于398.76 eV结合能处的Si3N4峰[33]和位于397.11 eV结合能处的CrN峰[34]。TiAlSiN涂层的Si2p谱观察到位于100.84 eV结合能处的Si3N4峰[35],说明TiAlSiN涂层中硅元素主要以非晶Si3N4存在,这与XRD结果相符合。TiAlCrN涂层的Cr2p谱由位于575.91,585.25,577.72,587.25 eV结合能处的峰组成,分别对应CrN以及其卫星峰(CrN-sat)[36]。

图 3 不同涂层的XPS谱

Figure 3. XPS patterns of different coatings (a) Ti2p pattern; (b) Al2p pattern; (c) N1s pattern; (d) Si2p pattern and (d) Cr2p pattern

2.3 力学性能

TiAlN涂层的硬度为(33.244±3.125)GPa,在硅、铬掺杂产生的固溶强化以及晶粒细化的Hall-Petch效应下TiAlSiN涂层和TiAlCrN涂层的硬度均明显升高,分别达到(41.216±3.874)GPa和(36.713±3.321)GPa。此外,TiAlSiN涂层因SiNx和(Ti,Al)N较高的混合焓而形成特殊的非晶SiNx相镶嵌(Ti,Al)N纳米晶结构,非晶相与纳米晶之间的共格效应会进一步提升其硬度[37]。TiAlN涂层、TiAlSiN涂层、TiAlCrN涂层的弹性模量分别为(316.610±26.423),(452.923±35.265),(378.485±28.386)GPa。硬度与弹性模量的比值H/E可用于评判材料的抗弹性变形能力,H3/E2则用于评判材料的抗塑性变形程度。H/EH3/E2数值越大,涂层的韧性越高。TiAlN涂层、TiAlSiN涂层、TiAlCrN涂层的H/E分别为0.105,0.091,0.097,H3/E2分别为0.367,0.341,0.345。可见,TiAlN涂层具有最高的H/E值和H3/E2值,说明其韧性最好,而TiAlSiN涂层的韧性最差。TiAlN涂层、TiAlSiN涂层、TiAlCrN涂层的结合力分别为81,74,78 N,内应力分别为−2.68,−3.94,−3.17 GPa。说明硅、铬元素掺杂在提升TiAlN涂层硬度的同时也提高了内应力。TiAlCrN涂层和TiAlSiN涂层内应力的提升可以归因为晶粒细化引起的晶界缺陷增加以及固溶强化导致的晶格畸变。

2.4 摩擦学性能

由图4可以看出,3种涂层在摩擦磨损初期的摩擦因数较高,随后逐渐降低至趋于稳定。TiAlN涂层、TiAlSiN涂层和TiAlCrN涂层的稳定摩擦因数分别约为0.35,0.25,0.27,可见硅元素和铬元素的掺杂均能降低TiAlN涂层的摩擦因数。这可以归因于硅元素和铬元素掺杂引起涂层的硬度提高;涂层的硬度越高,其与摩擦副之间的弹性接触面积越小,摩擦因数越低[38-39]。TiAlSiN涂层摩擦因数曲线中有较多尖锐的小峰,说明其在摩擦过程中出现了不平稳的磨损。TiAlN涂层、TiAlSiN涂层和TiAlCrN涂层的磨损率分别为3.5×10−5,1.8×10−5,1.4×10−5 mm3·N−1·m−1。TiAlSiN涂层比TiAlCrN涂层具有更低的摩擦因数,但是其磨损率却相对较大,这与TiAlSiN涂层内应力较大有关。

图 4 不同涂层的摩擦因数曲线

Figure 4. Friction coefficient curves of different coatings

3. 结论

(1)TiAlN涂层以及掺杂硅或铬的TiAlSiN涂层或TiAlCrN涂层均结构致密,与基体结合良好,呈柱状晶生长,呈现较强的(200)晶面择优取向。3种涂层均主要由TiN和AlN相组成,而TiAlSiN涂层还存在Si3N4非晶相。掺杂硅或铬后涂层晶粒尺寸减小,掺杂硅后晶粒尺寸减小幅度更大。

(2)掺杂硅或铬后涂层的硬度和内应力增大,且掺杂硅的增大幅度更大;掺杂硅或铬后涂层的硬度与弹性模量的比值和结合力降低,掺杂硅的降低幅度更大,韧性最差。

(3)硅元素和铬元素的掺杂均能降低TiAlN涂层的摩擦因数和磨损率,掺杂硅涂层的摩擦因数(0.25)略低于掺杂铬涂层(0.27),磨损率(1.8×10−5 mm3·N−1·m−1)略高于掺杂铬涂层(1.4×10−5 mm3·N−1·m−1)。

文章来源——材料与测试网

来源:小王看科技

相关推荐