摘要:import os all_files = [os.path.join(dp, f) for dp, dn, filenames in os.walk('/path/to/dir') for f in filenames]
访问迭代器中的下一项,例如,获取数据流中的下一个值
numbers = [1, 3, 5, 2, 9]next((x for x in numbers if x % 2 == 0), 0)//2#2 遍历目录以编程方式列出目录中的文件,可用于自动文件处理
import os all_files = [os.path.join(dp, f) for dp, dn, filenames in os.walk('/path/to/dir') for f in filenames]#3 堆排序有效地对列表中的元素进行排序和访问,例如查找最小的数字
import heapq my_list = [5, 7, 9, 1, 3]heapq.heapify(my_list) # my_list is now a heap print(my_list)//[1, 3, 9, 7, 5]替换字符串中的各种子字符串,用于数据清理等任务
import redict = {"apple": "orange", "banana": "berry"}text = "I ate an apple and a banana"re.sub('|'.join(map(re.escape, dict.keys)), lambda m: dict[m.group(0)], text////'I ate an orange and a berry'对数据进行编码以实现网络安全传输,这对数据隐私至关重要
import base64base64.urlsafe_b64encode('hello world!'.encode).decode//'aGVsbG8gd29ybGQh'为会话令牌等内容生成唯一标识符
import uuidstr(uuid.uuid4)//'9732856e-e6bb-4e85-9a49-c38afa20523b'估计对象的内存使用情况,这在资源管理中很重要
import sysmy_list = [1, 2, 3, 4, 5]sys.getsizeof(my_list)//185#8 类定义定义用于结构化数据处理的类,例如创建数据模型
ClassName = type('ClassName', , {'greet': lambda self: print("Hello, World!")})instance = ClassNameinstance.greet//Hello, World!#9 个人资料代码分析代码性能以识别瓶颈
import cProfiledef function: return sum([i * 2 for i in range(10000)])cProfile.run('function')// 6 function calls in 0.001 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 0.001 0.001 1168091676.py:3(function) 1 0.001 0.001 0.001 0.001 1168091676.py:4() 1 0.000 0.000 0.001 0.001 :1() 1 0.000 0.000 0.001 0.001 {built-in method builtins.exec} 1 0.000 0.000 0.000 0.000 {built-in method builtins.sum} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}//根据条件加载模块,优化资源利用
module_name = "math"math = __import__(module_name)math.sqrt(16) # Outputs: 4.0//4.0执行shell命令列出文件,与系统级任务集成
import subprocess# List files in the current directorysubprocess.check_output('ls').decode('utf-8')//'data\n'from sklearn.linear_model import LogisticRegression# Create a Logistic Regression classifierclassifier = LogisticRegression# Inspect the attributes and methods of the classifierclassifier_members = dir(classifier)# Print the list of classifier membersprint(classifier_members)//['C', '__annotations__', '__class__', '__delattr__', '__dict__', '__dir__',来源:自由坦荡的湖泊AI一点号
免责声明:本站系转载,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本站联系,我们将在第一时间删除内容!