栋察宇宙(三十二):python中的并发异步

B站影视 韩国电影 2025-10-09 23:12 2

摘要:Share interest, spread happiness, increase knowledge, and leave beautiful.

分享兴趣,传播快乐,增长见闻,留下美好!

亲爱的您,这里是LearningYard新学苑。

今天小编为大家带来

“栋察宇宙(三十二):python中的并发异步”。

欢迎您的访问!

Share interest, spread happiness, increase knowledge, and leave beautiful.

Dear, this is the LearingYard New Academy!

Today, the editor brings the "

Concurrent and Asynchronous Web Scraping in Python: Efficient Data Collection Solutions

".

Welcome to visit!

思维导图

MindMapping

在网络数据采集领域,面对海量网页资源,传统单线程爬虫因串行等待网络响应而效率低下。Python的并发与异步技术通过多任务并行处理,能显著提升爬虫吞吐量,成为大规模数据采集的核心方案。

In the field of web data collection, facing massive web resources, traditional single-threaded crawlers are inefficient due to serial waiting for network responses. Python's concurrent and asynchronous technologies, through multi-task parallel processing, can significantly improve crawler throughput, becoming a core solution for large-scale data collection.

核心技术路径

Core Technical Paths

1. 多线程爬虫

1. Multi-threaded Web Scraping

原理:基于`threading`模块或`concurrent.futures.ThreadPoolExecutor`,创建多个线程并行发起网络请求,利用I/O等待时间处理其他任务。

Principle: Based on the `threading` module or `concurrent.futures.ThreadPoolExecutor`, create multiple threads to initiate network requests in parallel, using I/O waiting time to process other tasks.

特点:实现简单,适合I/O密集型场景,但受GIL限制,无法实现CPU级并行;线程切换存在一定开销。

Characteristics: Simple to implement, suitable for I/O-intensive scenarios, but limited by GIL and cannot achieve CPU-level parallelism; there is a certain overhead in thread switching.

典型应用:中小规模网页采集,如批量获取API接口数据。

Typical applications: Small and medium-scale web collection, such as batch obtaining API interface data.

2. 多进程爬虫

2. Multi-process Web Scraping

原理:通过`multiprocessing`或`ProcessPoolExecutor`创建独立进程,每个进程拥有独立Python解释器,规避GIL限制。

Principle: Create independent processes through `multiprocessing` or `ProcessPoolExecutor`, each with an independent Python interpreter, avoiding GIL restrictions.

特点:适合CPU密集型任务(如复杂数据解析),内存占用较高,进程间通信成本大。

Characteristics: Suitable for CPU-intensive tasks (such as complex data parsing), with high memory usage and high inter-process communication costs.

典型应用:需要对爬取内容进行大量计算处理的场景。

Typical applications: Scenarios requiring extensive computational processing of crawled content.

3. 异步爬虫

3. Asynchronous Web Scraping

原理:基于`asyncio`事件循环和`aiohttp`异步HTTP客户端,使用`async/await`语法实现非阻塞I/O,单线程内并发处理大量请求。

Principle: Based on `asyncio` event loop and `aiohttp` asynchronous HTTP client, using `async/await` syntax to achieve non-blocking I/O, processing a large number of requests concurrently within a single thread.

特点:资源消耗极低,并发量远高于多线程/多进程,是高并发场景的最优选择;代码逻辑相对复杂。

Characteristics: Extremely low resource consumption, concurrency much higher than multi-threading/multi-processing, making it the best choice for high-concurrency scenarios; relatively complex code logic.

典型应用:大规模网页爬取,如电商商品信息采集、社交媒体数据抓取。

Typical applications: Large-scale web crawling, such as e-commerce product information collection and social media data scraping.

异步爬虫实现框架

Asynchronous Web Scraping Implementation Framework

1. 基础架构

1. Basic Architecture

事件循环(Event Loop)**:负责管理所有异步任务的执行顺序,是异步编程的核心。

Event Loop: Responsible for managing the execution order of all asynchronous tasks, the core of asynchronous programming.

协程(Coroutine)**:定义异步任务的函数(使用`async def`声明),通过`await`关键字等待I/O操作完成。

Coroutine: Functions defining asynchronous tasks (declared with `async def`), waiting for I/O operations to complete through the `await` keyword.

异步会话(Async Session)**:`aiohttp.ClientSession`替代传统`requests`库,支持非阻塞HTTP请求。

Async Session: `aiohttp.ClientSession` replaces the traditional `requests` library, supporting non-blocking HTTP requests.

性能优化与反爬应对

Performance Optimization and Anti-crawling Countermeasures

并发控制:通过`asyncio.Semaphore`限制同时发起的请求数(如10-50),避免触发服务器反爬机制或导致本地端口耗尽。

Concurrency control: Limit the number of simultaneous requests (e.g., 10-50) through `asyncio.Semaphore` to avoid triggering server anti-crawling mechanisms or exhausting local ports.

请求优化: - 复用`ClientSession`对象,减少TCP连接建立开销; - 设置合理的超时时间(5-10秒),避免长时间等待; - 启用连接池和HTTP/2支持,提升请求效率。

Request optimization: - Reuse `ClientSession` objects to reduce TCP connection establishment overhead; - Set reasonable timeout (5-10 seconds) to avoid long waits; - Enable connection pooling and HTTP/2 support to improve request efficiency.

反爬策略: - 随机User-Agent和请求头,模拟真实浏览器行为; - 集成代理IP池,定期更换请求IP; - 加入随机请求间隔,避免请求规律化。

Anti-crawling strategies: - Random User-Agent and request headers to simulate real browser behavior; - Integrate proxy IP pools to regularly change request IPs; - Add random request intervals to avoid request regularization.

适用场景与技术选型

Applicable Scenarios and Technology Selection

小规模采集(

Small-scale collection (

中大规模采集(1000-100000 URL):异步爬虫(`aiohttp + asyncio`)是最优选择,能以极少资源占用实现高并发。

Medium to large-scale collection (1000-100000 URLs): Asynchronous crawlers (`aiohttp + asyncio`) are the best choice, achieving high concurrency with minimal resource usage.

超大规模采集(>100000 URL):结合分布式框架(如`Celery + Redis`)与异步爬虫,实现集群化部署和任务调度。

Ultra-large-scale collection (>100000 URLs): Combine distributed frameworks (such as `Celery + Redis`) with asynchronous crawlers to achieve clustered deployment and task scheduling.

伦理与合规要点

Ethical and Compliance Points

遵守网站规则:检查目标网站的`robots.txt`,尊重爬取频率限制和禁止访问的路径。

Comply with website rules: Check the target website's `robots.txt`, respect crawling frequency limits and prohibited paths.

保护数据隐私:不爬取个人敏感信息,不用于非法商业用途,遵守《网络安全法》等相关法规。

Protect data privacy: Do not crawl personal sensitive information, do not use it for illegal commercial purposes, and comply with relevant regulations such as the "Network Security Law".

避免服务滥用:合理控制爬取强度,不影响目标网站的正常运行,践行负责任的爬虫开发理念。

Avoid service abuse: Reasonably control crawling intensity, do not affect the normal operation of the target website, and practice responsible crawler development concepts.

Python的并发异步爬虫技术为高效数据采集提供了成熟解决方案,其中异步I/O凭借极致的资源利用率成为主流选择。在实际开发中,需平衡效率与合规性,根据具体场景选择合适的技术方案。

Python's concurrent asynchronous crawler technology provides mature solutions for efficient data collection, among which asynchronous I/O has become the mainstream choice with extreme resource utilization. In actual development, it is necessary to balance efficiency and compliance, and choose appropriate technical solutions according to specific scenarios.

今天的分享就到这里了,

如果您对文章有独特的想法,

欢迎给我们留言。

让我们相约明天,

祝您今天过得开心快乐!

That's all for today's sharing.

If you have a unique idea about the article,

please leave us a message,

and let us meet tomorrow.

I wish you a nice day!

翻译:文心一言

参考资料:百度百科

本文由LearningYard新学苑整理并发出,如有侵权请后台留言沟通。

文案|qiu

排版|qiu

审核|song

来源:LearningYard学苑

相关推荐