摘要:激光诱导石墨烯(LIG)提供了一种在常温常压下合成石墨烯的低成本、环保方法,解决了传统高温高压工艺的局限性。然而,传统LIG技术存在机械强度和附着力极差的问题,这限制了其实际器件应用,尤其在可穿戴电子设备领域。这是因为单面激光照射常需过高功率才能使基底全厚度形
1成果简介
激光诱导石墨烯(LIG)提供了一种在常温常压下合成石墨烯的低成本、环保方法,解决了传统高温高压工艺的局限性。然而,传统LIG技术存在机械强度和附着力极差的问题,这限制了其实际器件应用,尤其在可穿戴电子设备领域。这是因为单面激光照射常需过高功率才能使基底全厚度形成石墨烯,导致基底烧蚀、材料损失及多孔网络坍塌,最终损害电化学性能。
为克服这些缺陷,本文,韩国首尔国立大学MinwooKim、Seung Hwan Ko等在《Carbon》期刊发表名为“Robust Freestanding Laser-induced Graphene Electrodes for Wearable Energy Devices”的论文,研究提出双面激光照射工艺,通过交替照射PEDOT:PSS/凯夫拉纳米纤维复合薄膜两面,制备出悬空式LIG。该方法最大限度减少了烧蚀现象,同时最大化石墨烯电极的有效表面积,从而提升柔性超级电容器的面电容及电容保持率。
关键在于,制备的LIG电极在激光处理后仍完整继承了复合薄膜中PEDOT:PSS的导电性与凯夫拉纳米纤维的机械强度。这些可转移的悬浮电极无需额外支撑即可紧密贴合各类材料、曲率或柔韧性的基底,可作为加热器、传感器及可重构能源模块使用。本研究为柔性多功能电子器件提供了可扩展的制造策略,推动了可穿戴储能系统、可塑性传感器及集成柔性器件的发展。
2图文导读
图1. Single- and Double-Sided Laser Processing Illustration and Comparison, and Freestanding PEDOT:PSS/Kevlar-Based LIG Applications (a) Schematic comparison of single-sided and double-sided laser irradiation processes. (b) Illustration of substrate damage and porous structure collapse caused by high-power laser ablation. (c) Cross-sectional SEM image showing structural damage after high-power laser irradiation. (d) Schematic of dual-sided irradiation minimizing ablation and preserving a uniform porous structure. (e) Cross-sectional SEM image showing the preserved porous structure after optimized dual-sided irradiation. (f) Demonstration of the freestanding LIG: floating on water (left) and substrate-free handling (right). (g) Transferable LIG-based heater and temperature sensor applied on PET films. (h) Reconfigurable and reusable supercapacitor modules using freestanding LIG electrodes: 6×1 series circuit (left), 3×2 parallel circuit (right).
图2. Characterization of PEDOT:PSS/Kevlar film-based LIG. (a) Schematic illustration of the fabrication process for the PEDOT:PSS/Kevlar film. (b) SEM and EDS images of laser-irradiated and non-irradiated regions on the PK film. (c) Sheet resistance of PK films with PEDOT:PSS to Kevlar volume ratios ranging from 1:10 to 1:2 under varying laser powers. (d) Areal capacitance per unit mass of PEDOT:PSS in PK films with PEDOT:PSS to Kevlar volume ratios from 1:10 to 1:2. (e) Zeta potential data of the mixed solution containing PEDOT:PSS and Kevlar nanofibers. (f) Sheet resistance of 1:2 ratio of PK films with and without ethylene glycol (EG) treatment under varying laser powers. (g) Raman shift data of LIG formed on PK films under different laser powers. (h) Relative resistance change (/ ) of LIG formed at on PK film after 1000 bending cycles. (i) Sheet resistance before and after transfer of LIG formed on PK film.
图3. SSLI–DSLI Laser Optimization, Performance Comparison, and Series/Parallel Scalability of PK-LIG MSCs. (a) Schematic illustration of the single-sided and double-sided laser irradiation processes. (b) Areal capacitance comparison as a function of the mix ratio of PEDOT:PSS and Kevlar nanofiber solution and laser power. (c) GCD profiles of single-sided laser-irradiated PK(1:2) films at different laser powers at a current density of 0.2 mA/cm2. (d) Areal capacitance of PK(1:2) films processed with 1.5 W laser on the top side and varying laser powers on the back side. (e) Comparison of GCD profiles between single-sided and double-sided LIG supercapacitors. (f) Areal capacitance comparison of single-sided and double-sided LIG supercapacitors at various current densities. (g) Capacitance retention comparison over 1000 cycles between single-sided and double-sided LIG supercapacitors. (h) EIS profiles of single-sided and double-sided LIG micro-supercapacitors, fitted with an Rs–(Rct∥CPEdl)–Wo equivalent circuit model. (i) CV profiles of dual-sided LIG micro-supercapacitors connected in series (1S to 3S) at a scan rate of 50 mV/s. (j) GCD profiles of dual-sided LIG micro-supercapacitors connected in parallel (1P to 3P) at a current density of 0.1 mA/cm2.
图4. Transfer and reconfiguration of LIG-based devices and evaluation of their functional stability. (a) Schematic illustration of the LIG transfer process onto various substrates and its reconfiguration into series and parallel capacitor assemblies. (b) Comparison of GCD profiles between pre- and post-transfer. (c) Temperature sensing performance pre- and post-transfer. (d) Heater pre- and post-transfer. (e) GCD profiles of capacitors configured in series and parallel through the reconfiguration process. (f) Blue and red LEDs powered by capacitors reconfigured for high-voltage (series mode) and long-duration (parallel mode) operation.
3小结
本研究通过优化DSLI工艺,成功在PK复合薄膜上制备出高质量的自支撑LIG。与传统单面辐照不同,DSLI技术能在薄膜全厚度范围内形成均匀多孔石墨烯结构,同时最大限度减少烧蚀损伤,从而同时提升结构完整性和电化学性能。采用该方法制备的超级电容器在0.1 mA cm⁻²电流密度下实现21.15 mF cm⁻²的比电容,较单面工艺提升165.3%。经1000次循环测试,DSLI基器件仍保持92.79%的电容值,证实其卓越耐久性。
独立式LIG电极展现出卓越的机械与电学稳定性:经1000次弯曲循环后仍保持低电阻值,转移前后性能变化极小。该电极无需粘合剂即可可靠转移至各类基底,并可通过镊子手动重构,通过串联或并联重组实现多样化电路设计。这些发现凸显了DSLI策略的潜在普适性和可扩展性,该策略也可应用于凯夫拉复合材料中PK体系之外的其他导电填料。
此类特性可实现输出电压和工作时间的灵活调控,使该平台能高度适应不同应用需求。未来工作可聚焦于系统微型化及与功能材料的集成,以实现可穿戴生物传感器和储能单元等多功能器件。与以往仅将PEDOT:PSS局限于特定功能的方案不同,本策略实现了传感、加热与可重构储能的多功能协同。所开发的LIG电极兼具可重构性与可靠性能,为新一代柔性电子器件奠定了基础战略,在可持续能源与智能传感平台领域具有广阔应用前景。
文献:
来源:材料分析与应用
来源:石墨烯联盟