摘要:林奇综合征作为最常见的遗传性癌症综合征之一,其相关结直肠癌的传统认知长期停留在“所有病例均为dMMR/MSI-H表型”的框架内。然而,近年多项研究揭示约10%的林奇综合征相关结直肠癌实为pMMR/MSS,且多发生于MSH6或PMS2胚系变异携带者。这一发现颠覆
编者按:林奇综合征作为最常见的遗传性癌症综合征之一,其相关结直肠癌的传统认知长期停留在“所有病例均为dMMR/MSI-H表型”的框架内。然而,近年多项研究揭示约10%的林奇综合征相关结直肠癌实为pMMR/MSS,且多发生于MSH6或PMS2胚系变异携带者。这一发现颠覆了既往共识,提示临床需对所有林奇综合征患者进行强制性的MMR/MSI状态检测,以避免治疗决策的偏差。
本文系统梳理了林奇综合征相关结直肠癌的分子分型与免疫治疗响应的关联,不仅更新了林奇综合征相关结直肠癌的分子认知,更为精准医学时代下的肿瘤个体化诊疗提供了重要参考,值得临床医师与科研人员深入研读。
林奇综合征相关结直肠癌都是dMMR/MSI-H状态吗?
林奇综合征是最常见的遗传性癌症综合征之一,约占所有结直肠癌的3%,美国人群中患病率约为1/279。其特征为MMR基因(如MLH1、MSH2、MSH6、PMS2和EPCAM)的胚系致病性变异(PV),导致终生癌症风险升高,尤其是早发性癌症。结直肠癌和子宫内膜癌是林奇综合征患者最常见的癌症类型;其他相关癌症包括胃癌、卵巢癌、尿路上皮癌、小肠癌和胰腺癌。
这些肿瘤最常见于MSI-H表型,其发生源于一个或多个MMR基因的功能失活。例如,MLH1胚系PV患者可能通过体细胞二次突变或杂合性丢失导致MLH1失活,进而引发微卫星DNA突变积累(即微卫星不稳定)。临床上,dMMR/MSI-H状态可通过肿瘤组织免疫组化(IHC,检测MMR蛋白表达)、聚合酶链式反应(PCR)或下一代测序(NGS)确定。
越来越多的研究注意到,林奇综合征患者中存在少数pMMR/MSS结直肠癌。例如,纪念斯隆-凯特琳癌症中心的两项近期研究显示:Ranganathan等在86例林奇综合征患者的99例结直肠癌中发现,10%(10/99)的肿瘤通过NGS检测为MSS。几乎所有MSS结直肠癌均发生于MSH6和PMS2致病性变异携带者。与MSI-H肿瘤相比,林奇综合征患者的MSS肿瘤发病年龄更晚(58岁 vs. 43岁),且更可能初诊即为转移性(60% vs. 13%)。
Harrold等在405例林奇综合征患者中发现,近30%的肿瘤为MSS。此类肿瘤同样更可能通过免疫组化显示MSH6或PMS2蛋白缺失。这两项研究均挑战了“所有林奇综合征患者均患MSI-H肿瘤”的传统观念。因此,对该人群必须确认MMR/MSI状态,尤其是MSH6和PMS2致病性变异携带者,以确定免疫治疗适应证和治疗前评估。
为什么免疫治疗对dMMR/MSI-H结直肠癌有效?
MMR缺陷主要表现为肿瘤基因组微卫星区域(短DNA重复序列)的插入或缺失(indels)。编码区微卫星的indels会导致多基因移码突变,造成关键蛋白功能丧失并破坏重要细胞通路,从而促进肿瘤发生。dMMR肿瘤在基因组编码和非编码区均积累DNA indels,导致MSI-H和总体 somatic 突变负荷升高。编码区微卫星的indels还会产生新型肽段(neoantigens),这些neoantigens应被免疫系统识别为“异物”并触发以细胞毒性T细胞为主的免疫反应。然而,癌细胞过度表达PD-1和PD-L1(免疫检查点),导致T细胞失活和肿瘤免疫逃逸。
dMMR/MSI-H肿瘤的高免疫原性和neoantigen负荷使其对免疫治疗(尤其是抗PD-1/PD-L1单克隆抗体或联合抗CTLA-4抗体)高度敏感,可恢复正常的抗肿瘤T细胞反应。鉴于该人群对化疗耐药且免疫治疗能带来显著临床缓解和长期生存获益,免疫治疗已迅速成为转移性dMMR/MSI-H结直肠癌和局部晚期dMMR/MSI-H直肠癌的一线标准治疗。新辅助免疫治疗用于MSI-H结肠癌的初步数据(NCT02912559)令人鼓舞,近期公布的ATOMIC试验结果也显示,化疗联合免疫治疗在辅助治疗中具有明确获益。
林奇综合征相关pMMR/MSS结直肠癌患者能否从免疫治疗中获益?
免疫治疗在MSI-H结直肠癌中已证实显著疗效:基于KEYNOTE-177和CheckMate-8HW试验,帕博利珠单抗和纳武利尤单抗联合伊匹木单抗分别获批用于转移性结直肠癌的一线治疗。ATOMIC试验评估了免疫治疗联合6个月辅助FOLFOX化疗的效果,2025年ASCO年会公布的结果显示,FOLFOX联合阿替利珠单抗组的3年无病生存率(DFS)显著提高(86.4% vs. 76.6%)。目前,MSI-H转移性结直肠癌中免疫治疗联合化疗的疗效正在COMMIT试验(NCT02997228)中探索,但该试验已于2025年6月28日暂停。
尽管未直接评估林奇综合征相关MSS结直肠癌的免疫治疗,但非林奇综合征MSS结直肠癌的相关数据可供参考。多项病例报告显示,林奇综合征相关MSS结直肠癌患者对免疫治疗反应极微。其他试验(如CO.26、METIMMOX、BACCI、MAYA)也未显示免疫治疗对pMMR/MSS结直肠癌有生存获益。
AtezoTRIBE试验显示,在FOLFOXIRI联合贝伐珠单抗基础上加用免疫治疗,可使无进展生存期(PFS)小幅延长(13个月 vs. 11.5个月),但总生存期(OS)无显著差异(30.8个月 vs. 29.2个月)。不过,肿瘤突变负荷高(TMB-H)或免疫评分高(Immunoscore-H)的患者可能呈现获益趋势。CheckMate-9X8试验在主要MSS转移性结直肠癌(约96%)中探索了免疫治疗联合标准化疗,结果显示获益极微或无获益。另一项试验显示,botensilimab联合balstilimab用于难治性无肝转移MSS结直肠癌患者,客观缓解率(ORR)达19%,提示部分患者可能从免疫治疗中获益。
综上,单纯林奇综合征诊断不足以指导结直肠癌治疗选择,因为约10%的林奇综合征相关结直肠癌可能为MSS。因此,所有林奇综合征相关结直肠癌均需通过IHC、PCR或NGS检测dMMR/MSI-H状态(尽管结直肠癌普遍推荐此检测)。尽管胃肠道恶性肿瘤的免疫治疗适应证正在快速扩展,且新型药物联合免疫治疗或其他新方案的临床试验正在进行,但目前数据不支持免疫治疗用于MSS结直肠癌。免疫治疗应仅限于dMMR/MSI-H结直肠癌。
参考文献
1. Moreira L, Balaguer F, Lindor N, et al; EPICOLON Consortium. Identification of Lynch syndrome among patients with colorectal cancer. JAMA. 2012;308(15):1555-1565.
2. Win AK, Jenkins MA, Dowty JG, et al. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2017;26(3):404-412.
3. Peltomäki P, Nyström M, Mecklin JP, Seppälä TT. Lynch syndrome genetics and clinical implications. Gastroenterology. 2023;164(5):783-799.
4. Salem ME, Bodor JN, Puccini A, et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int J Cancer. 2020;147(10):2948-2956.
5. Roudko V, Greenbaum B, Bhardwaj N. Computational prediction and validation of tumor-associated neoantigens. Front Immunol. 2020;11:27.
6. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409-413.
7. Ranganathan M, Sacca RE, Trottier M, et al. Prevalence and clinical implications of mismatch repair-proficient colorectal cancer in patients with Lynch syndrome. JCO Precis Oncol. 2023;7(7):e2200675.
8. Harrold E, Vanderbilt C, Maio A, et al. Clinical and molecular characterization of microsatellite stable (MSS) tumors in patients with Lynch syndrome (LS). J Clin Oncol. 2023;41:16s (suppl; abstr 10517).
9. Diaz LA Jr, Shiu KK, Kim TW, et al; KEYNOTE-177 Investigators. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 2022;23(5):659-670.
10. André T, Elez E, Van Cutsem E, et al; CheckMate 8HW Investigators. Nivolumab plus ipilimumab in microsatellite-instability-high metastatic colorectal cancer. N Engl J Med. 2024;391(21):2014-2026.
11. Sinicrope FA, Ou F-S, Arnold D, et al. Randomized trial of standard chemotherapy alone or combined with atezolizumab as adjuvant therapy for patients with stage III deficient DNA mismatch repair (dMMR) colon cancer (Alliance A021502; ATOMIC). J Clin Oncol. 2025;43:17s (suppl; abstr LBA1).
12. Khandakar B, Lacy J, Gibson JA. Mismatch repair proficient colorectal adenocarcinoma in two patients with Lynch syndrome. Clin Genet. 2025;107(4):469-474.
13. Kapoulitsa F, Mauri D, Tsilidis KK, et al. Microsatellite stable colorectal tumours in patients with Lynch syndrome: a case report and systematic review analysing clinical features and implications for immunotherapy. J Gastrointest Cancer. 2025;56(1):86.
14. Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 study. JAMA Oncol. 2020;6(6):831-838.
15. Ree AH, Šaltytė Benth J, Hamre HM, et al. First-line oxaliplatin-based chemotherapy and nivolumab for metastatic microsatellite-stable colorectal cancer-the randomised METIMMOX trial. Br J Cancer. 2024;130(12):1921-1928.
16. Mettu NB, Ou FS, Zemla TJ, et al. Assessment of capecitabine and bevacizumab with or without atezolizumab for the treatment of refractory metastatic colorectal cancer: a randomized clinical trial. JAMA Netw Open. 2022;5(2):e2149040.
17. Morano F, Raimondi A, Pagani F, et al. Temozolomide followed by combination with low-dose ipilimumab and nivolumab in patients with microsatellite-stable, O6-methylguanine-dna methyltransferase-silenced metastatic colorectal cancer: the MAYA trial. J Clin Oncol. 2022;40(14):1562-1573.
18. Antoniotti C, Rossini D, Pietrantonio F, et al. Upfront fluorouracil, leucovorin, oxaliplatin, and irinotecan plus bevacizumab with or without atezolizumab for patients with metastatic colorectal cancer: updated and overall survival results of the ATEZOTRIBE study. J Clin Oncol. 2024;42(22):2637-2644.
19. Lenz HJ, Parikh A, Spigel DR, et al. Modified FOLFOX6 plus bevacizumab with and without nivolumab for first-line treatment of metastatic colorectal cancer: phase 2 results from the CheckMate 9X8 randomized clinical trial. J Immunother Cancer. 2024;12(3):e008409.
20. Fakih M, Segal NH, Schlechter BL, et al. Preliminary results from a randomized, open-label, phase 2 study of botensilimab (BOT) with or without balstilimab (BAL) in refractory microsatellite stable metastatic colorectal cancer with no liver metastases (MSS mCRC NLM). J Clin Oncol. 2025;43:4s (suppl; abstr 23).
21. Chen K, Chen W, Yue R, et al. Evaluation of the efficacy and safety of first- and second-line immunotherapy in patients with metastatic colorectal cancer: a systematic review and network meta-analysis based on randomized controlled trials. Front Immunol. 2024;15:1439624.
22. Lenz HJ, Van Cutsem E, Luisa Limon M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Clin Oncol. 2022;40(2):161-170.
23. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509-2520.
24. National Comprehensive Cancer Network. Colon Cancer (Version 2.2025). Published April 24, 2025. Accessed June 5, 2025. https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf
来源:肿瘤瞭望消化时讯