关于计算机视觉中的自回归模型,这篇综述一网打尽了

B站影视 2024-12-02 15:51 3

摘要:本文是一篇关于自回归模型在视觉领域发展的综述论文,由港大、清华、普林斯顿、杜克、俄亥俄州立、UNC、苹果、字节跳动、香港理工大学等多所高校及研究机构的伙伴联合发布。随着计算机视觉领域的不断发展,自回归模型作为一种强大的生成模型,在图像生成、视频生成、3D 生成

本文是一篇关于自回归模型在视觉领域发展的综述论文,由港大、清华、普林斯顿、杜克、俄亥俄州立、UNC、苹果、字节跳动、香港理工大学等多所高校及研究机构的伙伴联合发布。随着计算机视觉领域的不断发展,自回归模型作为一种强大的生成模型,在图像生成、视频生成、3D 生成和多模态生成等任务中展现出了巨大的潜力。然而,由于该领域的快速发展,及时、全面地了解自回归模型的研究现状和进展变得至关重要。本文旨在对视觉领域中的自回归模型进行全面综述,为研究人员提供一个清晰的参考框架。5. 挑战与未来工作自回归模型在计算机视觉领域虽然取得了一定的成果,但也面临着一些挑战:5.1 视觉分词器设计:设计能有效压缩图像或视频的视觉分词器是关键挑战,如 VQGAN 及其改进方法,以及利用层次多尺度特性提高压缩效果。例如,可以通过改进向量量化算法、引入注意力机制等方式,提高视觉分词器的性能和压缩效果。5.2 离散与连续表征的选择:自回归模型传统上采用离散表示,但连续表示在简化视觉数据压缩器训练方面有优势,同时也带来新挑战,如损失函数设计和多模态适应性。例如,可以探索连续表示下的自回归模型,设计合适的损失函数,提高模型在多模态数据上的适应性。5.3 自回归模型架构中的归纳偏差:探索适合视觉信号的归纳偏差架构,如 VAR 利用层次多尺度视觉词元化,以及双向注意力的优势。例如,可以研究不同的归纳偏差架构对自回归模型性能的影响,寻找最适合视觉信号的架构。5.4 下游任务:当前视觉自回归模型在下游任务上的研究相对滞后,未来需开发能适应多种下游任务的统一自回归模型。例如,可以将自回归模型应用于目标检测、语义分割等下游任务,探索如何提高模型在这些任务上的性能。6. 总结本文对计算机视觉中的自回归模型进行了全面综述,介绍了自回归模型的基础、通用框架分类、与其他生成模型的关系、应用领域、评估指标以及面临的挑战和未来工作。自回归模型在计算机视觉领域具有广阔的应用前景,但仍需进一步研究解决现有问题,以推动其发展和应用。© THE END转载请联系本公众号获得授权

来源:明明科技论

相关推荐