摘要:在我们之前的AI 智能体架构探索中,我们讨论了角色、指令和记忆的核心组成部分。现在,我们将深入探讨不同的提示策略如何增强智能体的推理能力,使其在解决问题的方法上更加有条理和透明。
提示策略增强了智能体的推理能力,有助于解决 AI 应用中的问题。我们将向您展示如何实现。
译自How To Add Reasoning to AI Agents via Prompt Engineering,作者 Janakiram MSV。
在我们之前的AI 智能体架构探索中,我们讨论了角色、指令和记忆的核心组成部分。现在,我们将深入探讨不同的提示策略如何增强智能体的推理能力,使其在解决问题的方法上更加有条理和透明。
有效的提示工程技术已被证明对于帮助大型语言模型(LLM) 生成更可靠、结构化和推理良好的响应至关重要。这些技术利用以下几个关键原则:
逐步分解:将复杂的任务分解成更小、更易于管理的步骤,有助于 LLM 更系统地处理信息,减少错误并提高逻辑一致性。明确的格式指令:提供清晰的输出结构指导模型组织其思路,并以更易于理解的格式呈现信息。自我反思提示:鼓励模型回顾自身的推理过程,有助于发现潜在的错误并考虑不同的视角。情境框架:提供具体的框架(例如“分析优缺点”或“考虑多种情况”)有助于模型从不同的角度处理问题。这些技术构成了我们已实现的推理策略的基础,每种策略都旨在利用 LLM 能力的不同方面,同时保持响应的一致性和可靠性。
理解基于策略的推理虽然基本的智能体可以直接处理任务,但高级推理需要结构化的方法来解决问题。该实现使用策略模式来定义不同的推理框架。让我们看看这些策略在我们增强的智能体架构中是如何定义的:
classExecutionStrategy(ABC): @abstractmethod defbuild_prompt(self, task: str, instruction: Optional[str] =None) -> str: """Build the prompt according to the strategy.""" pass @abstractmethod defprocess_response(self, response: str) -> str: """Process the LLM response according to the strategy.""" pass
这个抽象基类为实现各种推理策略提供了基础。每种策略都提供了一种独特的方法来:
构建解决问题的过程;分解复杂的任务;组织智能体的思维过程;以及确保对问题的全面考虑。ReAct:推理和行动classReactStrategy(ExecutionStrategy): defbuild_prompt(self, task: str, instruction: Optional[str] =None) -> str: base_prompt="""Approach this task using the following steps: 1) Thought: Analyze what needs to be done 2) Action: Decide on the next action 3) Observation: Observe the result 4) Repeat until task is complete Follow this format for your response: Thought: [Your reasoning about the current situation] Action: [The action you decide to take] Observation: [What you observe after the action] ... (continue steps as needed) Final Answer: [Your final response to the task] Task: {task}"""
此策略确保:
思维链策略将复杂的问题分解成可管理的步骤,使推理过程更加透明和可验证。以下是它的样子:
classChainOfThoughtStrategy(ExecutionStrategy): defbuild_prompt(self, task: str, instruction: Optional[str] =None) ->str: base_prompt="""Let's solve this step by step: Task: {task} Please break down your thinking into clear steps: 1) First, ... 2) Then, ... (continue with your step-by-step reasoning) Final Answer: [Your conclusion based on the above reasoning]""" returnbase_prompt
这种方法提供:
通过复杂问题的线性进展;步骤和结论之间的清晰联系;更易于验证推理过程;以及更好地理解结论是如何得出的。反思:深度分析和自我审查反思策略增加了一个元认知层,鼓励智能体检查自身的假设并考虑替代方法。代码如下:
classReflectionStrategy(ExecutionStrategy): defbuild_prompt(self, task: str, instruction: Optional[str] =None) ->str: base_prompt="""Complete this task using reflection: Task: {task} 1) Initial Approach: - What is your first impression of how to solve this? - What assumptions are you making? 2) Analysis: - What could go wrong with your initial approach? - What alternative approaches could you consider? 3) Refined Solution: - Based on your reflection, what is the best approach? - Why is this approach better than the alternatives?""" returnbase_prompt
与智能体架构集成这些策略通过工厂模式和策略设置器无缝集成到智能体架构中:
classAgent: @property defstrategy(self) -> Optional[ExecutionStrategy]: returnself._strategy @strategy.setter defstrategy(self, strategy_name: str): """Set the execution strategy by name.""" self._strategy=StrategyFactory.create_strategy(strategy_name) 执行流程包含所选策略: defexecute(self, task: Optional[str] =None) -> str: iftaskisnotNone: self._task=task messages=self._build_messages try: response=client.chat.completions.create( model=self._model, messages=messages ) response_content=response.choices[0].message.content # Process response through strategy if set ifself._strategy: response_content=self._strategy.process_response(response_content)
实践应用以下是这些策略在实践中的使用方法:
fromagentimportAgent defmain: # Initialize the agent agent=Agent("Problem Solver") # Configure the agent agent.persona="""You are an analytical problem-solving assistant. You excel at breaking down complex problems and explaining your thought process. You are thorough, logical, and clear in your explanations.""" agent.instruction="Ensure your responses are clear, detailed, and well-structured." # Define the park planning task park_planning_task=""" A city is planning to build a new park. They have the following constraints: - Budget: $2 million - Space: 5 acres - Must include: playground, walking trails, and parking - Environmental concerns: preserve existing trees - Community request: include area for community events How should they approach this project?""" # Display available reasoning strategies print("Available reasoning strategies:", agent.available_strategies) print("\n"+"="*50) # Test ReAct strategy print("\n=== Using ReAct Strategy ===") agent.strategy="ReactStrategy" agent.task=park_planning_task response=agent.execute print(f"\nTask: {park_planning_task}") print("\nResponse:") print(response) print("\n"+"="*50) # Test Chain of Thought strategy print("\n=== Using Chain of Thought Strategy ===") agent.clear_history # Clear previous interaction history agent.strategy="ChainOfThoughtStrategy" agent.task=park_planning_task response=agent.execute print(f"\nTask: {park_planning_task}") print("\nResponse:") print(response) print("\n"+"="*50) # Test Reflection strategy print("\n=== Using Reflection Strategy ===") agent.clear_history # Clear previous interaction history agent.strategy="ReflectionStrategy" agent.task=park_planning_task response=agent.execute print(f"\nTask: {park_planning_task}") print("\nResponse:") print(response) print("\n"+"="*50) if__name__=="__main__": main
此实现允许:
灵活的策略选择:针对不同类型的任务采用不同的推理方法。一致的格式:无论选择哪种策略,输出结构都一致。清晰的推理轨迹:对问题解决过程进行透明的记录。策略比较:轻松评估对同一问题的不同方法。策略推理的益处这些推理策略的实现带来了几个关键优势:
增强的问题解决能力:多种方法来处理复杂的任务。改进的透明度:清晰地了解智能体的推理过程。更好的验证:更容易验证智能体的结论。灵活的架构:易于添加新的推理策略。框架的完整源代码可在GitHub 仓库中找到。
未来展望虽然这些推理策略显著增强了智能体的能力,但未来仍有几个改进方向:
基于任务类型动态选择策略;结合多种策略的混合方法;增强每个策略中的错误处理;以及基于指标的策略有效性评估。结构化推理策略与智能体现能力的结合,创造了一个更强大、更通用的系统,能够处理复杂问题,同时保持其决策过程的透明性和可靠性。
在本系列的下一部分,我们将为智能体添加长期记忆,使它们能够暂停和恢复任务。敬请期待。
本文在云云众生()首发,欢迎大家访问。
来源:新浪财经