摘要:溶液中痕量银(Ag⁺)催化黄铜矿的酸氧化溶解。聚焦离子束—扫描电镜(FIB-SEM)揭示了浸出反应的异质性及硫化铜的形成。提出机制:银在催化反应过程中不发生氧化或还原反应。银以固溶体形式替代黄铜矿晶格中的铜,从而提升溶解速率。近表面溶液中银硫氢络合物(如Ag(
研究亮点
溶液中痕量银(Ag⁺)催化黄铜矿的酸氧化溶解。聚焦离子束—扫描电镜(FIB-SEM)揭示了浸出反应的异质性及硫化铜的形成。提出机制:银在催化反应过程中不发生氧化或还原反应。银以固溶体形式替代黄铜矿晶格中的铜,从而提升溶解速率。近表面溶液中银硫氢络合物(如Ag(HS)₂⁻)实现银的有效循环。
黄铜矿
硫酸铁浸出
银
聚焦离子束—扫描电镜FIB-SEM
催化机制
研究背景
2025年正值黄铜矿(CuFeS₂)命名300周年,该矿物作为全球最主要的铜矿资源,约占世界铜储量的70%。铜在实现碳中和经济转型中至关重要,预计到2050年需求量将翻倍。然而,大型高品位铜矿的发现日益减少,亟需通过高效处理低品位矿石来满足持续增长的人口、经济发展及可再生能源与电动交通的需求。当前主流的浮选—火法冶金组合工艺虽普遍应用,但其高能耗和高成本限制了低品位资源的开发,而堆浸技术等湿法冶金方法因预处理简单、成本低成为有潜力的替代方案,但其在低控制条件下处理巨量贫矿时金属回收率通常仅为30%~70%,显著低于火法工艺(>90%)。为突破此瓶颈,研究发现添加微量银离子(Ag⁺)可显著加速黄铜矿的溶解速率,但其催化机制长期存疑。
本研究旨在验证银对单一黄铜矿精矿的动力学影响,并通过产物表面/近表面精细成像进一步解析银催化黄铜矿溶解机制。基于硫化物反应性及固态离子扩散—溶解速率耦合机制的最新认知框架,本文提出与过去50年大量观测一致的反应机制。研究表明:银的催化作用源于其在含硫溶液中类似铜的配位化学特性及其快速固态扩散能力,从而在黄铜矿反应表面形成循环反应。
图1. 酸性硫酸铁溶液中黄铜矿溶解机理示意图:(a) 添加银催化剂与未添加的溶解机制对比;(b) 溶解过程中银催化剂在黄铜矿表面的循环机制
研究方法及结果
从黄铜矿中提取铜具有挑战性,因为酸溶解过程缓慢且以非全等溶解方式进行,涉及复杂的三步反应机理。自20世纪70年代以来,银对黄铜矿提铜的催化作用已被认知,但其机理仍存争议。在最优浸出条件下(黄铜矿颗粒50~150 μm,铁/亚铁硫酸盐溶液中氧化还原电位约500 mV vs. Ag/AgCl,银浓度约1 ppm [Ag] 6.4 × 10⁻⁶ mol/L,温度70°C,时长4 d)获得的实验产物微区表征显示:反应呈现非均质性。在黄铜矿颗粒内部裂隙及表面均形成了微米厚的多孔硫化铜层,其成分存在波动。未发现富银相(Ag₂S(s)、Ag⁰(s))形成的证据。无论是否添加银,基本的三步反应机理保持不变;银仅加速初始溶解步骤。
本文结合硫化物矿物反应性研究的最新进展,提出了银催化效应的整合模型:初始反应遵循"流体诱导的固态扩散机制",溶液中铁的快速迁出驱动晶格中铁向表面扩散,形成贫铁表面层。相对Cu⁺/Fe³⁺具有较大离子半径的Ag⁺扩散进入该贫铁层,在后续步骤中加速黄铜矿溶解,由于矿物表面富硫化物的微环境作用,通过界面耦合的溶解—再沉淀反应,黄铜矿逐渐被硫化铜替代。有效的Ag⁺循环是银发挥催化作用的关键,这源于Ag⁺对黄铜矿溶解表面富集的硫氢根配体具有强亲和力。
原文信息
The catalytic effect of silver on acidic ferric-sulfate leaching of chalcopyrite: A microscopic cyclic reaction
Barbara Etschmann, Luis Verdugo, Alexander Kalintsev, Maryam Olamide Abdus-Salam, Rahul Ram, Luke Vollert, John O’Callaghan, Yang Liu, Timothy Williams, Paul Guagliardo, Joël Brugger
copper extraction from chalcopyrite is challenging, because acid dissolution is slow, occurring incongruently via a complex three-step reaction mechanism. Silver has been known to catalyse copper extraction from chalcopyrite since the 1970's; yet the mechanism remains controversial. Microcharacterisation of experimental products obtained under optimal leaching conditions (50–150 μm chalcopyrite grains in ferric/ferrous-sulfate solution with a redox potential around 500 mV vs. Ag/AgCl, approximately 1ppm Ag; [Ag] 6.4 × 10−6 mol/L; 70 °C; 4 days) highlights the heterogeneity of the reaction: µm-thick layers of a porous copper-sulfide with variable composition formed both in cracks within, and on the surface of the chalcopyrite grains. There is no evidence for formation of Ag-rich phases (Ag2S(s), Ag0(s)). The fundamental three-step reaction mechanism remains the same with or without added silver; silver merely accelerates the initial dissolution step.
An integrated model for the catalytic effect of silver is proposed that incorporates recent advances in the reactivity of sulfide minerals. The initial reaction follows a ‘Fluid-Induced Solid State Diffusion Mechanism’, where diffusion of Fe in the chalcopyrite lattice is driven towards the surface by its rapid removal into solution, resulting in a Fe-deficient surface layer. The large Ag ion, relative to Cu/Fe3+, diffuses into this Fe-deficient surface layer and accelerates chalcopyrite dissolution in the subsequent step, whereby chalcopyrite is replaced by copper sulfides via an interface coupled dissolution reprecipitation reaction as a consequence of the sulfide-rich micro-environment at the mineral surface. Effective Ag recycling is key to the catalytic effect of silver, and occurs as a result of the strong affinity of Ag for bisulfide ligands accumulating at the surface of dissolving chalcopyrite.
来源:科创中国一点号