连续制备多功能石墨烯/ANF薄膜可穿戴设备、军事系统和航空航天等

B站影视 欧美电影 2025-08-25 16:46 2

摘要:精确控制二维石墨烯纳米片(GNP)在复合薄膜中的取向对于优化其力学性能和电磁干扰(EMI)屏蔽性能至关重要。然而,在连续制备过程中实现具有密集取向结构的多功能GNP基薄膜仍面临重大挑战。本文,河南大学Bing Zhou、郑州大学周兵 助理研究员等在《Chemi

1成果简介

精确控制二维石墨烯纳米片(GNP)在复合薄膜中的取向对于优化其力学性能和电磁干扰(EMI)屏蔽性能至关重要。然而,在连续制备过程中实现具有密集取向结构的多功能GNP基薄膜仍面临重大挑战。本文,河南大学Bing Zhou、郑州大学周兵 助理研究员等在《Chemical Engineering Journal》期刊发表名为“Scalable wet-spinning of aramid nanofibers-assisted graphite films for broadband electromagnetic interference shielding with Joule heating”的论文,研究首次报道了通过湿法纺丝技术制备的多功能GNP/ANF薄膜,该技术利用延长流动通道产生剪切力,成功实现了高度取向且致密的结构。引入了一种高效的球磨策略,该策略同时促进了惰性GNP和ANF的均匀分散,并增强了它们的界面结合。

此外,所得的GNP/ANF薄膜展现出卓越的多功能性能,在仅含9.1% ANF增强的情况下,实现了14.0 MPa的出色拉伸强度,低片电阻(44.2 Ω/sq), 以及出色的宽带电磁干扰(EMI)屏蔽性能(在X波段8.2–26.5 GHz范围内,60 μm时为25.6 dB,220 μm时为54.8 dB),这归因于湿法纺丝过程中剪切力诱导的高度有序且密集排列的GNP微结构。此外,GNP/ANF薄膜展现出卓越的电热性能(5.0V时为85.9 °C)和优异的阻燃性能,使其在极端环境中具备有效的除冰能力,拓展了其应用潜力。本研究提出了一种可扩展的制备先进EMI屏蔽材料的方法,该方法在可穿戴设备、军事系统和航空航天工程领域具有广泛应用前景。

2图文导读

图1. GNP/ANF薄膜湿法纺丝工艺的示意图。

图2. (a) FTIR spectra and (b) Raman spectrum of ANF, GNP, and GNP/ANF film. (c) XPS C1s spectrum of GNP and G10A1-0.75 film. (d) Stress-strain curves of GNP/ANF films with various ANF concentration. (e) Calculated tensile strength and elongation at break for the composite films. (f) TGA curves comparing the thermal stability of pure ANF and GNP/ANF composite films. (g) Combustion behavior of the composite films when exposed to an alcohol lamp flame.

图3. Electromagnetic interference shielding performance of GNP/ANF films. (a) Sheet resistance and electrical conductivity, (b) EMI SE curve, (c) average SET, SEA, SER, and (d) average power coefficients (A, R, T) for GNP/ANF films with varying ANF concentration. Inset in the Figure b provides a visual demonstration of EMI shielding capability using a Tesla coil system. (e) Thickness-dependent EMI SE value of G10A1-0.75 film. (f) EMI SE values and (g) corresponding SET, SEA, and SER values for GNP/ANF films with different GNP loading. (h) Stability of EMI shielding performance of G10A1-0.75 film under burning tests for 120 s. (i) Schematic illustration of the multi-mechanism EMI shielding process in GNP/ANF films.

图4. Electrothermal performance of the GNP/ANF film. (a) Temperature profiles of GNP/ANF films with varying ANF concentration under a 5 V applied voltage. (b) Real-time temperature variations of the G10A1-0.75 film at different DC voltage (2–5 V), demonstrating rapid Joule heating and stabilization. (c) Linear relationship between maximum saturation temperature and U2, confirming Joule heating behavior. The inset displays corresponding IR thermal images, highlighting uniform temperature distribution. (d) Cyclic heating-cooling stability of the G10A1-0.75 film at 3 V and 4 V, showing excellent repeatability over multiple cycles. (e) Long-term temperature stability of the G10A1-0.75 heater at 5 V, maintaining consistent performance for over 3600 s. (f) EMI SE comparison before and after prolonged electric heating, verifying retained shielding capability. (g) Ice-melting demonstration using the G10A1-0.75 film at 5 V, achieving complete ice removal within 60 s.

3小结

综上所述,本研究通过湿法纺丝技术,利用延长流动通道产生剪切力,成功制备了具有高度取向和致密结构的高性能GNP/ANF薄膜。所得薄膜独特地集成了卓越的宽带电磁干扰(EMI)屏蔽能力和焦耳加热性能,这得益于其精确取向的纳米结构实现的多功能优化。采用高效的球磨策略,实现了惰性GNP与ANF的均匀分散,同时增强了其界面结合力。高长宽比的ANF作为界面桥梁,既提升了GNP薄膜的成膜能力(在9.1% ANF负载量下达到14.0 MPa的拉伸强度),又在剪切力作用下促进了复合材料的致密堆积。薄膜展现出卓越的电导率和稳定的电磁干扰(EMI)屏蔽性能(220 μm时为54.8 dB),即使在酒精火焰暴露下仍能保持结构完整性。值得注意的是,薄膜展现出优异的焦耳加热性能(5 V时为85.9°C),可实现快速除冰能力。本研究提出了一种简单且可扩展的制备多功能GNP/ANF复合材料的方法,突显了其在国防系统和航空航天应用中的潜力。

文献:

来源:材料分析与应用

来源:石墨烯联盟

相关推荐