PDMS–MCTPU/AY织物压力传感器,用于多点运动检测和健康监测

B站影视 电影资讯 2025-06-25 17:23 1

摘要:技术的发展日新月异,推动了智能可穿戴设备的进步。基于纱线的压力传感器因能提升多点压力识别的准确性而备受关注。然而,制备高灵敏度纱线阵列仍面临挑战。本文,四川大学郭荣辉 教授团队在《J. Mater. Chem. B》期刊发表名为“High-performanc

1成果简介

技术的发展日新月异,推动了智能可穿戴设备的进步。基于纱线的压力传感器因能提升多点压力识别的准确性而备受关注。然而,制备高灵敏度纱线阵列仍面临挑战。本文,四川大学郭荣辉 教授团队在《J. Mater. Chem. B》期刊发表名为“High-performance pressure sensors based on MXene@CNT coaxial nanofiber-coated yarns for multipoint motion detection and health monitoring”的论文,研究通过TPU电纺技术制备了同轴纳米纤维涂覆纱线,并通过MXene@CNT负载使其在交叉节点模式下工作,展现出卓越的传感性能。该传感器具有0–49.09 N的传感范围、45.50 N−1的最大灵敏度及35 ms的响应时间,并在5000次循环及高温(45 °C)条件下保持稳定性能。此外,单根PDMS–MCTPU/AY纱线也具备压力传感特性。4×4 PDMS–MCTPU/AY压力传感阵列可有效识别压力位置与大小,这凸显了PDMS–MCTPU/AY同轴纳米纤维涂层纱线在运动检测与健康管理领域的应用潜力。

2图文导读

图1、 (a) Flowchart of the preparation of the PDMS–MCTPU/AY yarn sensor. Digital photographs of the formation process of (b) AY, (c) TPU/AY coaxial nanofiber-coated yarn, (d) MCTPU/AY coaxial nanofiber-coated yarn, (e) PDMS–MCTPU/AY coaxial nanofiber-coated yarn, and (f) PDMS–MCTPU/AY woven fabric. (g) Digital photograph of the PDMS–MCTPU/AY woven fabric in the bent state.

图2、Cross-sectional SEM images of (a)–(c) TPU/AY coaxial nanofiber-coated yarn, (d)–(f) MCTPU/AY coaxial nanofiber-coated yarn, and (g)–(i) PDMS–MCTPU/AY coaxial nanofiber-coated yarn.

图3、 (a) SEM images of the PDMS–MCTPU/AY coaxial nanofiber-coated yarn and the corresponding EDS energy spectra: (b) C, (c) O, (d) Ti, (e) Si, and (f) Fe.

图4、(a) XRD spectra of the TPU/AY, MCTPU/AY, and PDMS–MCTPU/AY coaxial nanofiber-coated yarn. XPS spectra: (b) full spectrum scan and (c) C 1s region for TPU/AY; (d) full spectrum scan, (e) Ti 2p region, and (f) O 1s region for MCTPU/AY; (g) full spectrum scan, (h) C 1s region, and (i) Si 2p region for PDMS–MCTPU/AY.

图5、Stress–strain curves of AY, MCTPU/AY, and PDMS–MCTPU/AY.

图6、“Pressure-ΔI/I0” curves of the (a) PDMS–MCTPU/AY pressure sensor, (b) PDMS–MTPU/AY pressure sensor, and (c) PDMS-CTPU/AY pressure sensor. (d) Response and recovery time of the PDMS–MCTPU/AY pressure sensor. (e) Minimum detection limit of the PDMS–MTPU/AY pressure sensor. (f) and (g) Response curves of the PDMS–MCTPU/AY pressure sensor to different pressures. (h) “IV” curves under different pressures. (i) Response curves to identical pressures of different frequencies. (j) Stable pressure response of PDMS–MCTPU/AY sensors over 5000 cycles.

图7.(a) “pressure–ΔI/I0” curve, (b) the correlation between the resistance and the immersion time, (c) response/recovery time, (d) minimum detection limit, and (e)–(g) pressure response in different pressure ranges of single PDMS–MCTPU/AY yarn. (h) “IV” curves of single PDMS–MCTPU/AY yarn under different pressures. (i) Response curves to pressures of different frequencies, and (j) stable pressure response of a single PDMS–MCTPU/AY yarn over 3000 cycles.

图8、 (a) Pressure sensing mechanism of the PDMS–MCTPU/AY yarn sensor. (b) Analog circuit diagram of the PDMS–MCTPU/AY yarn sensor.

图9、Detection of human physiological and motion signals by the PDMS–MCTPU/AY pressure sensor for (a) pulse, (b) swallowing, (c) wrist flexion, (d) finger flexion, (e) elbow flexion, and (f) knee flexion.

图10、(a) Schematic diagram of the pressure-sensing array collecting plantar pressure information. (b) Signal response of the 16 points of the sensing array during walking. (c) and (d) Static plantar pressure signals for different plantar tilt directions of the standing posture.

3小结

通过电纺丝工艺和超声辅助浸涂法,成功制备了PDMS–MCTPU/AY同轴纳米纤维涂层纱线。采用交叉节点模式工作的PDMS–MCTPU/AY织物压力传感器展现出优异的传感性能,其传感范围为0–49.09 N,最大灵敏度为45.50 N^(−1),最小检测限为0.08 N。该传感器响应时间为35 ms,并在超过5000次循环后仍保持稳定性能。此外,单根PDMS–MCTPU/AY纱线也具备压力传感特性,这对提升交叉节点结构的功能性至关重要。单根PDMS–MCTPU/AY纱线具有0–100.12 N的传感范围、0.00664 N^(−1)的最大灵敏度、0.54 N的最小检测限、60 ms的响应时间,以及超过3000个循环的稳定性能。通过编织工艺制备的4×4 PDMS–MCTPU/AY压力传感阵列,能够有效识别压力的位置和大小。PDMS–MCTPU/AY编织织物具有疏水性,接触角(WCA)为120.28°,确保了传感器性能的稳定性。当PDMS–MCTPU/AY压力传感器附着于人体或衣物时,可准确检测脉搏、吞咽、关节弯曲及足底压力信号,凸显其在紧急救援领域中用于运动检测与健康监测的潜力。

文献:

来源:材料分析与应用

来源:石墨烯联盟

相关推荐