低温碳化MOF/CNF气凝胶,用于高性能微波吸收和热红外伪装等

B站影视 内地电影 2025-06-20 16:48 1

摘要:开发轻质、高性能且具有多种功能的微波吸收材料已成为电磁防护领域的一大挑战。本文,华北理工大学Xiangjia Song、中北大学 Junru Yao、南京信息工程大学XiangfeiWei、南京航空航天大Jintang Zhou等研究人员在《Carbon》期刊

1成果简介

开发轻质、高性能且具有多种功能的微波吸收材料已成为电磁防护领域的一大挑战。本文,华北理工大学Xiangjia Song、中北大学 Junru Yao、南京信息工程大学XiangfeiWei、南京航空航天大Jintang Zhou等研究人员在《Carbon》期刊发表名为“Low-temperature carbonization MOF/CNF aerogel for high-performance microwave absorption and thermal camouflage”的论文,研究提出通过整合微波吸收与热伪装功能,制备了基于ZIF-67/纤维素纳米纤维(CNF)的Co–C/C气凝胶。

通过在CNF上原位生长ZIF-67并调控低温碳化过程,构建了同时存在微米级骨架孔和MOF衍生纳米孔的分级孔结构。同时获得了均匀分布的Co纳米颗粒(20–30 nm)及富含缺陷的石墨化碳异质界面。该Co–C/C气凝胶展现出超低密度(16.21–17.35 mg/cm³)。在微波吸收性能方面,其在2.4 mm厚度下实现了6.87 GHz的有效吸收带宽(覆盖Ku频段)。这归因于分级孔隙的多重散射协同机制、低温碳化诱导的增强界面极化,以及Co纳米颗粒的磁损耗。此外,该材料展现出0.0492W m−1 K−1的低热导率,红外成像揭示了其显著的热信号屏蔽能力。本研究通过原位生长和低温碳化策略解决了传统MOF衍生材料中结构坍塌和功能单一的问题,为设计轻量化、宽带和多功能隐形材料提供了新思路。

2图文导读

图1. (a) Fabrication process, (b) the density, (c)XRD patterns and (d)FT-IR patterns of LCC aerogel. (A colour version of this figure can be viewed online.)

图2. SEM image of (a, b) CNF aerogel and (c, d) LCC aerogel; (e–g) TEM image and elemental mapping images of LCC aerogel. (A colour version of this figure can be viewed online.)

图3. (a) Raman spectra, (b) magnetic hysteresis loop and (c) TGA curve in the air atmosphere of LCC aerogel; N2 adsorption–desorption isotherms and pore diameter distribution of (d) LCC-500, (e) LCC-550 and (f) LCC-600. (A colour version of this figure can be viewed online.)

图4. (a) Thermal conductivity of LCC aerogel; (b) Temperature of LCC aerogel with the thick of 5 mm on a 180 °C hot platform and (c) corresponding infrared radiation diagram; (d) Infrared radiation diagram of LCC aerogel on the hand. (A colour version of this figure can be viewed online.)

图5. (a) Real part of permittivity, (b) imaginary part of permittivity, (c) dielectric tangent loss, (d) real part of permeability, (e) imaginary part of permeability, (f) magnetic tangent loss of LCC aerogel, (g–i) Cole–Cole plots, (j) fitted polarization loss, (k) the proportion of polarization loss and (l) C0 values of LCC aerogel. (A colour version of this figure can be viewed online.)

图6. (a–c) 3D RL diagrams for LCC aerogels; (d) 2D image of RL for LCC-550 with different thickness; (e) EAB comparison of LCC-550 with previously reported MOF derivatives and other aerogels; (f) EMW absorption mechanism for LCC aerogel. (A colour version of this figure can be viewed online.)

图7. CST simulation results of a 3D RCS plot for the PEC layer covering (a–c) with LCC aerogels and (d) without LCC aerogels; (e) The RCS simulation model and (f) RCS curves LCC aerogels and PEC. (A colour version of this figure can be viewed online.)

3小结

综上所述,我们通过低温碳化策略(500–600 °C)成功制备了基于ZIF-67/CNF的Co–C/C气凝胶,实现了磁共振吸收(MA)与热伪装功能的协同优化。该材料以三维多孔CNF气凝胶基底为基础,通过原位生长ZIF-67并进行低温碳化,构建了微米级框架孔与MOF衍生纳米孔共存的分级多孔结构。同时,均匀分布的钴纳米颗粒(20–30 nm)及富含缺陷的石墨化碳界面得以形成。LCC-550样品展现出最佳综合性能:超低密度(17.01 mg/cm³);超低热导率(0.0516 W m^(−1) K^(−1)),有利于热信号屏蔽;高性能MA(厚度为2.4 mm时EAB为6.87 GHz), 这归因于分级孔隙引起的多次散射、石墨碳/钴异质界面极化,以及自然共振-涡流协同损耗机制。本研究通过低温碳化精确调控组分与结构,突破了传统MA材料中密度与性能的权衡关系,为探索MOF衍生物与其他材料的复合、开发多场景应用以及多功能集成微波吸收材料提供了新思路。

文献:

来源:材料分析与应用

来源:石墨烯联盟

相关推荐