摘要:塑料污染问题日益严重,聚对苯二甲酸乙二醇酯(PET)作为典型废弃塑料,占比达11%,其回收利用备受关注。然而,在常规PET解聚回收单体过程中,乙二醇的利用常被忽视,从而影响资源利用率。与此同时,尽管多种可降解聚合物表现出良好的应用前景,但其关键单体,如乳酸的制
塑料污染问题日益严重,聚对苯二甲酸乙二醇酯(PET)作为典型废弃塑料,占比达11%,其回收利用备受关注。然而,在常规PET解聚回收单体过程中,乙二醇的利用常被忽视,从而影响资源利用率。与此同时,尽管多种可降解聚合物表现出良好的应用前景,但其关键单体,如乳酸的制备等仍受限于发酵效率低或化学合成过程复杂等问题。构建融合降解与合成的一体化回收策略,以废PET为原料绿色转化为可降解单体,将为塑料可持续发展提供新路径。但仍需突破高效解聚、产物定向转化与副产物控制等关键挑战。
近日,四川大学王玉忠院士团队建立了一种基于锰催化的PET解聚-原位脱氢偶联及溶剂切换升级回收新策略。以甲醇作为溶剂,PET高效转化为TPA和乳酸,两者收率均大于98%;将溶剂切换为不含α氢的叔戊醇时,可实现PET定量转化为TPA与乙醇酸。该方法对于不同的聚酯具有广泛适用性。对照实验和机理研究表明,在锰催化剂作用下,甲醇脱氢形成甲醛,继而发生羟醛缩合和碱介导的Cannizzaro反应,生成羟基羧酸单体。而当使用叔戊醇时,该路径受限,此时二醇可通过脱氢形成羟基羧酸或二羧酸,产物类型取决于碳链长度。本研究策略拓展了PET升级利用的新路径。该工作以题为“Adjustable Upcycling of Polyethylene Terephthalate to Biodegradable Polymer Monomers by Mn-Catalyzed Solvent Switching Strategy”的论文发表在《Angew. Chem. Int. Ed.》上,第一作者为四川大学博士生张顺,通讯作者为刘雪辉副研究员和徐世美教授。
【溶剂切换策略实现PET升级回收制备可生物降解聚合物单体】
图1a展示了PET升级转化路线。不同催化剂类型对PET转化影响明显,侧位含有异丙基取代基的PNP-Mn可实现大于98%的乳酸收率(图1b),在反应5 min时即观察到乳酸单体的生成(图1c)。探究了不同碱类型对产物分布影响,KOH具有良好的溶解度和强碱性,表现效果最佳。即使将用量降低至4 eq.,也可获得大于60%的乳酸收率。
图1 锰催化PET转化性能探究
乳酸收率随着甲醇用量减少而降低(图2a),同时观察到另一种生物单体(乙醇酸)含量增加,这是因为部分乙二醇自身发生脱氢反应生成乙醇酸。将甲醇替换为水时,大部分乙二醇未转化,表明水的存在抑制了催化活性。而将水切换为叔戊醇时,PET可定量转化为TPA和乙醇酸(图2b)。反应40 min即可获得超过85%的乙醇酸收率(图2c)。通过该溶剂切换实现了PET向不同生物单体的升级转化(图2d)。使用甘油醛和乙二醛作为模型化合物探究PET转化控制因素,发现PET的解聚和脱氢过程主要由KOH和锰催化剂决定,脱氢产物的后续转化主要在KOH介导下完成(图2e)。乳酸的生成涉及甘油醛脱水过程。通过对照实验(有锰催化剂,无锰催化剂和无锰催化剂时额外添加生成乳酸过程产生的定量水)在叔丁醇钾催化解聚下探究了水对产物分布影响,发现在锰催化剂存在下,PET成功转化为TPA和乳酸;但无锰催化剂时,反应产物为DMT和乙二醇,说明反应路径为酯交换(图2f)。而在无锰催化剂情况下额外加入等量水,可使DMT转化为TPA。说明乙二醇向乳酸转化过程中释放的水可推动PET水解转化为TPA。
图2 PET升级转化条件优化与机理研究
将该升级回收策略应用于实际废弃物,如彩色PET瓶和聚酯纤维(图3a),亦可高效转化为LA和GA,证明催化体系对实际样品中的添加剂等混杂组分具有良好耐受性。此外,该方法适用于多种聚酯(图3b)。PEN与PEA因含乙二醇单元,经溶剂切换分别可获得高产率的乳酸或乙醇酸;而PBT和PBS则在甲醇中生成相应的二酸和二醇,在叔戊醇中生成丁二酸。其中PBS由丁二酸和丁二醇缩聚而成,产物丁二酸同时来源于PBS解聚和丁二醇氧化,假设PBS解聚生成丁二酸的产率为100%,此时丁二醇转化为丁二酸的产率为83%。该转化过程将两种结构单元统一为单一产物,简化了后续分离。丁二酸产率偏低可能源于丁二醇活性较低,可通过优化温度、时间或催化剂进一步提升。
图3 不同聚酯材料的回收
总结:开发了一种聚酯通用升级回收策略,可高效解聚多种废弃聚酯(如PET、PEN、PEA、PBT和PBS),并通过简单的溶剂切换过程将其选择性升级转化为可生物降解的聚合物单体(如乳酸、乙醇酸或丁二酸等)。该策略将聚酯解聚与解聚产物二醇单体的原位脱氢偶联反应进行串联,从而获得不同生物降解聚合物单体,其种类取决于聚酯二醇单体和醇溶剂:乙二醇在甲醇中生成乳酸(产率>96%),在叔戊醇中生成乙醇酸(产率>98%);而丁二醇在甲醇中不生成脱氢偶联产物,在叔戊醇中则转化为丁二酸,其中PBT可直接得到单一产物,大大简化后续分离纯化过程。在锰催化下,甲醇脱氢生成甲醛,进而发生醛醇缩合 Cannizzaro反应生成羟基酸;在不含活泼氢的叔戊醇中,该路径受限,聚酯二醇则通过脱氢氧化形成相应羟基酸或二羧酸,具体类型受碳链长度影响。该策略为聚酯塑料升级回收和生物降解聚合物单体的合成提供了新的参考与途径。
来源:高分子科学前沿一点号1