摘要:电子设备用先进电子产品的快速发展,催生了对具有优异热导率的电磁干扰(EMI)屏蔽膜的迫切需求。然而,通过在聚合物框架内建立密集的电气连接网络来实现这些双重特性仍面临挑战。本文,天津工业大学Wen-Hao Geng、Hong-Zhang Geng等研究人员在《A
1成果简介
电子设备用先进电子产品的快速发展,催生了对具有优异热导率的电磁干扰(EMI)屏蔽膜的迫切需求。然而,通过在聚合物框架内建立密集的电气连接网络来实现这些双重特性仍面临挑战。本文,天津工业大学Wen-Hao Geng、Hong-Zhang Geng等研究人员在《ACS Appl. Polym. Mater.》期刊发表名为“Composite Flexible Films Based on MWCNT and Modified Graphene for Electric Heating and EMI Shielding”的论文,研究采用溶液熔融法,以多壁碳纳米管(MWCNT-NH₂)、多巴胺修饰石墨烯(P@GNs)和聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)为原料,制备了性能增强的柔性复合膜(MPP),以同时提升EMI屏蔽性能和热导率。
在制备过程中,采用多巴胺盐酸盐(PDA)对石墨烯进行改性,其与MWCNT-NH₂的协同作用建立了有效的导电网络,从而提升了PVDF-HFP中的电荷转移效率。复合薄膜的电导率和电磁干扰屏蔽效能通过导电填料与聚合物的合理排列实现。厚度为0.2 mm的薄膜达到电磁屏蔽效能(EMI SE)32.54 dB,并展现出令人印象深刻的平面电导率1000 S/m。此外,该薄膜因其更高的电导率而展现出优异的热导率,在5 V电压下温度可达约172 °C。鉴于这些优势,本研究中制备的柔性复合薄膜在柔性电子学和电磁屏蔽领域具有显著应用潜力,并可能为未来采用电子技术的先进设备提供创新解决方案。
2图文导读
图1. Schematic diagram of the fabrication methods of P@GNs powder and films.
图2. TEM image of (a) GNs, (b) P@GNs; (c) Raman spectra of GNs and P@GNs; (d) XPS spectra of GNs and P@GNs; (e) C 1s spectra of P@GNs; (f) N 1s spectra of P@GNs.
图4. (a) XRD patterns of PVDF-HFP, MWCNT, and MPP film, respectively. (b) Fourier infrared spectra of MWCNT, P@GNs, and MPP film.
图5. (a) Water contact angle of films with different contents; (b) resistance of MPP film and MP film; (c) mechanical properties of films of different contents.
图6. (a) Temperature variation with different contents of P@GNs of (a) 0.5 wt %, (b, c) 0.7 and 1 wt % MWCNT-NH2; (d) time–temperature profiles of 1 wt % MWCNT/PVDF-HFP film at 2–10 V driving voltage and (e) MPP film at 1–5 V driving voltage, (f) surface temperatures of MPP film under stepwise increase/decrease of varying voltages: 1, 2, 3, 4, and 5 V cycles, (g) surface temperature distributions of the MPP film under 1, 2, 3, 4, and 5 V heating/cooling cycles, (h) surface temperature distribution of the MPP film at 10 heating/cooling for 10 cycles at 5 V, and (i) constant temperature test of the MPP film at a constant voltage of 3 V (IR image of the midpoint of the test).
图7. Digital photographs and IR images of MPP films with different sizes and shapes: (a) films of size 2 × 1 cm2 and (b) 2 × 2 cm2 at 1, 3, and 5 V, (c) 5 × 1 cm2 film in normal state, and (d) 5 × 1 cm2 film in bent state at 2, 6, and 10 V.
图8. EMI shielding performance of MPP films: (a) EMI SE of MPP films with different content in X-band; (b) SEA, SER, and SET of MPP films; (c) R, T, and A coefficients of MPP films; (d) A/R coefficients and conductivity of MPP films with different content; (e) relationship between the number of layers, thickness, and resistance of MPP film; (f) scheme of EMI shielding mechanism for MMP film.
3小结
综上所述,采用溶液铸造法成功制备了具有优异电磁干扰屏蔽性能和热导率的超疏水柔性复合薄膜。复合薄膜中MWCNT-NH₂与P@GNs之间的协同作用,使得薄膜中形成了坚固的导电网络,从而赋予薄膜出色的电磁干扰屏蔽性能。当MWCNT-NH2含量为1wt %且MWCNT-NH2与P@GNs的质量比为1:1时,复合薄膜的导电率达到1000 S/m,EMI屏蔽效率(EMI SE)为32.54 dB,EMI屏蔽效率与厚度比(EMI SSE/t)为1301. 在厚度约为0.2 mm时,其屏蔽效率达到6 dB cm² g⁻¹,相较于同类屏蔽材料展现出显著优势。
此外,MPP薄膜还具备卓越的焦耳加热能力,在5 V电压施加后约45秒内即可达到172 °C的峰值稳态温度,且在薄膜变形条件下仍能维持优异的电加热性能。此外,PVDF-HFP不仅对碳基材料具有显著的包覆效果,还提升了MPP薄膜的力学性能,其抗拉强度约为16MPa,并具有出色的疏水性(WCA=175°)。本研究采用的溶液铸造法不仅提升了生产效率,还实现了薄膜厚度的精准控制并降低缺陷率,使开发的MWCNT-NH₂/P@GNs/PVDF-HFP复合薄膜具备优异的电磁干扰(EMI)屏蔽性能与高热导率,从而呈现轻量化、柔性化特性,同时保持复合薄膜的疏水性而不影响EMI屏蔽的稳定性。溶液铸造法不仅在工业生产中具有高度可行性,还可制备出具有巨大潜力的新型复合薄膜,适用于柔性电子设备、电磁屏蔽及热管理等应用领域。
文献:
来源:材料分析与应用
来源:石墨烯联盟