摘要:数据序列化是将数据转换为可以存储或传输并随后重建的格式的过程。 json(JavaScript 对象表示法)由于其可读性和易用性而成为最流行的序列化格式之一。在 Python 中, json模块为处理 JSON 数据提供了强大的支持。
数据序列化是将数据转换为可以存储或传输并随后重建的格式的过程。 json(JavaScript 对象表示法)由于其可读性和易用性而成为最流行的序列化格式之一。在 Python 中, json模块为处理 JSON 数据提供了强大的支持。
JSON 将数据表示为键值对。它支持简单的数据类型,如字符串、数字和布尔值,以及更复杂的结构,如数组和嵌套对象。典型的 JSON 文件可能如下所示:
{ "name": "Alice", "age": 30, "is_employee": true, "skills": ["Python", "Data Analysis", "Machine Learning"], "projects": { "current": "Data Migration", "completed": ["API Development", "Web Scraping"] }}首先将上述 JSON 保存为项目目录根目录中名为data.json的文件 —文件:json_project/data.json
将此 JSON 数据加载到 Python 中:
脚本:json_project/read_json.py
import json# Open and load the JSON filewith open("data.json", "r") as file: data = json.load(file)# Access elements from the loaded dataprint(f"Name: {data['name']}")print(f"Current Project: {data['projects']['current']}")运行脚本:
python read_json.py预期输出:
Name: AliceCurrent Project: Data Migration要将 Python 数据结构保存为 JSON,请使用json.dump 。例如,让我们创建一个脚本来写入 JSON 数据:
脚本:json_project/write_json.py
import json# Data to be saved as JSONdata = { "name": "Bob", "age": 25, "is_employee": False, "skills": ["Java", "Spring Boot", "DevOps"], "projects": { "current": "System Upgrade", "completed": ["Automation", "Monitoring Setup"] }}# Save data to a JSON filewith open("new_data.json", "w") as file: json.dump(data, file, indent=4)print("Data saved to new_data.json")运行脚本:
python write_json.py检查生成的new_data.json文件:
{ "name": "Bob", "age": 25, "is_employee": false, "skills": [ "Java", "Spring Boot", "DevOps" ], "projects": { "current": "System Upgrade", "completed": [ "Automation", "Monitoring Setup" ] }}对于更复杂的 JSON 数据,您可以通过链接键或索引来访问嵌套值。更新data.json以包含更深层次的嵌套:
更新文件:json_project/data.json
{ "name": "Alice", "age": 30, "is_employee": true, "skills": ["Python", "Data Analysis", "Machine Learning"], "projects": { "current": "Data Migration", "completed": ["API Development", "Web Scraping"], "details": { "API Development": { "duration": "3 months", "team_size": 5 }, "Web Scraping": { "duration": "1 month", "team_size": 3 } } }}要访问嵌套详细信息:
脚本:json_project/nested_json.py
import json# Load the updated JSON filewith open("data.json", "r") as file: data = json.load(file)# Access nested dataapi_details = data["projects"]["details"]["API Development"]print(f"API Development Duration: {api_details['duration']}")print(f"Team Size: {api_details['team_size']}")运行脚本:
python nested_json.py预期输出:
API Development Duration: 3 monthsTeam Size: 5有时,JSON 数据以字符串形式出现,例如来自 API。您可以使用json.loads解析 JSON 字符串,使用json.dumps将 Python 对象转换为字符串:
脚本:json_project/json_strings.py
import json# JSON stringjson_string = '{"name": "Charlie", "age": 35, "skills": ["C++", "Rust"]}'# Convert string to Python objectpython_data = json.loads(json_string)print(f"Name: {python_data['name']}")# Convert Python object to JSON stringjson_output = json.dumps(python_data, indent=2)print(json_output)访问密钥JSON 对象中的键可以像 Python 中的字典键一样访问。例如:
import json# Sample JSONjson_string = '''{ "name": "Alice", "age": 30, "skills": ["Python", "Data Analysis"], "projects": { "current": "Data Migration", "completed": ["API Development", "Web Scraping"] }}'''# Convert JSON string to Python dictionarydata = json.loads(json_string)# Access keysprint(data["name"]) # Output: Aliceprint(data["projects"]["current"]) # Output: Data Migration迭代键循环遍历 JSON 对象中的所有键:
# Looping through top-level keysfor key in data: print(f"Key: {key}, Value: {data[key]}")输出:
Key: name, Value: AliceKey: age, Value: 30Key: skills, Value: ['Python', 'Data Analysis']Key: projects, Value: {'current': 'Data Migration', 'completed': ['API Development', 'Web Scraping']}检查钥匙在访问密钥之前,最好检查它是否存在以避免错误:
if "skills" in data: print(f"Skills: {data['skills']}")else: print("Key 'skills' not found.")列出所有键您可以使用.keys获取 JSON 对象中的所有键:
# Get all keys in the JSONkeys = data.keysprint(keys) # Output: dict_keys(['name', 'age', 'skills', 'projects'])对于嵌套键,您需要单独访问它们:
nested_keys = data["projects"].keysprint(nested_keys) # Output: dict_keys(['current', 'completed'])添加密钥移除钥匙
del data["age"]print(data) # The 'age' key will no longer be in the data如果您有嵌套的 JSON 并且想要提取所有键(包括嵌套键),请使用递归:
def extract_keys(obj, parent_key=""): keys = for key, value in obj.items: full_key = f"{parent_key}.{key}" if parent_key else key keys.append(full_key) if isinstance(value, dict): keys.extend(extract_keys(value, full_key)) return keys# Extract keysall_keys = extract_keys(data)print(all_keys)上述 JSON 的输出:
['name', 'age', 'skills', 'projects', 'projects.current', 'projects.completed']来源:自由坦荡的湖泊AI