用扫描微电化学池显微镜研究腐蚀的前景:挑战与机遇

B站影视 2025-01-09 11:32 2

摘要:工业领域中使用的金属材料通常是多晶的,包含各种晶体取向和晶粒尺寸。此外,在金属表面和块体内部存在各种异质显微组织,包括金属间化合物、夹杂物、晶粒、相界和其他缺陷。理解这些因素是必要的,因为非均质性增加了金属和合金腐蚀行为的复杂性。因此,通过了解潜在的机制,可以

工业领域中使用的金属材料通常是多晶的,包含各种晶体取向和晶粒尺寸。此外,在金属表面和块体内部存在各种异质显微组织,包括金属间化合物、夹杂物、晶粒、相界和其他缺陷。理解这些因素是必要的,因为非均质性增加了金属和合金腐蚀行为的复杂性。因此,通过了解潜在的机制,可以提出有效的腐蚀保护策略。

非均相组织中不同相之间的微电流效应被广泛报道为局部腐蚀的主要原因,(2,3),这在实验(4)和理论上都得到了深入的研究。(5)表面活性位点的存在,如夹杂物、(6)沉淀、(7、8)和缺陷(9 ~ 12)是导致局部腐蚀的主要因素之一。腐蚀行为还受到晶粒的晶体取向(13−15)的影响,这可以用表面能(或功函数)及其配位数的概念来解释。(16)通过测量各种晶粒的电化学行为,可以进一步探索其潜在的机制。原子力显微镜(AFM)、(17,18)扫描隧道显微镜(STM)、(19)透射电子显微镜(TEM)、(20−22)扫描开尔文探针力显微镜(SKPFM)、(23,24)和原位x射线衍射(25)等高空间分辨率非电化学技术已被广泛用于直接研究材料的腐蚀特性。然而,这些技术不足以获得微观电化学指标,如极化曲线,这限制了我们对微观结构与电化学性能之间关系的理解。此外,无法获得实际的极化行为对模拟微观结构相关的腐蚀行为提出了重大挑战。(26)

相比之下,扫描微电化学技术,如扫描电化学显微镜(SECM),扫描振动电极技术(SVET),(28)和扫描离子电导显微镜(SICM),(29,30)可以在微纳米尺度上记录不同微结构的电化学数据。然而,这些技术仍然有一些局限性。首先,他们扫描完全浸没的样品表面,提供由于不同微观结构(如晶粒取向、相结构、析出物、夹杂物和晶界)之间的微电效应而与邻近区域耦合的电化学信息。(6,8,31,32)少数研究中提到的不同颗粒的“邻近效应”(18,33,34)仍然没有得到很好的理解。其次,从一个点到下一个点获取信号的顺序扫描策略导致每个扫描区域的浸泡时间不同,尽管某些技术可以实现更快的扫描速率。在某些情况下,需要很长时间(长达数小时),这可能会导致样品和尖端的表面发生变化。(35)总之,基于化学探针的电化学方法仍然存在不足,阻碍了我们理解微观结构对腐蚀行为的影响。作为一种补充方法,小面积(36)技术允许对金属和合金表面进行直接的、局部的微电化学测量。

微毛细管电池(MCC)技术是一种广泛应用的小面积方法,它利用直径为1 ~ 1000 μm的玻璃毛细管来探测金属和合金的局部腐蚀特性。扫描微电化学池显微镜(SECCM)是MCC技术的先进版本(一种非接触模式,带有升级的控制系统,可提供纳米级高精度位移和先进的数据收集模块,可同时记录电化学和地形数据),(36)保留了其前身的大部分优势。由于其强大的扫描系统和卓越的数据处理能力(源自扫描电化学显微镜,即SECM), SECCM在扫描速度、空间分辨率(≥10 nm)和吞吐量(数百至数千)方面取得了重大进展,能够在微纳米尺度上对腐蚀相关的电化学过程进行高通量测量。

作为一种升级技术,SECCM在2010年采用了双通道配置(40)来取代被称为扫描微吸管接触法(SMCM)的单管配置。(37)该方法的定义在2009年至2017年期间存在混淆。在一些研究中,它将单管移液器的配置称为SMCM,(41,42),而另一些研究则将其称为SECCM。(38,43)为简洁起见,自2017年以来,使用单管或双管移液器的基于半月板细胞的技术被统称为SECCM。它已经成为对各种材料进行微纳米电化学测量的一种通用方法,促进了对微观结构和电化学活动之间关系的更好理解。(36,45,46)然而,SECCM在金属材料腐蚀研究中的实际应用面临一些挑战,包括电解质蒸发(47,48)准参考对电极(QRCE)的可靠性(49,50)和iR下降(在某些情况下可能很高)。(51−53)针对这些问题,一些科学家更新了SECCM系统,并加入了新的模式,以扩大其在腐蚀科学中的应用。例如,开发了油浸式SECCM,以延长腐蚀试验的测量时间。(47)设计了一种全固体SECCM来处理蒸发问题。(39)并装配了扫描电化学电池阻抗显微镜(SECCIM)进行腐蚀动力学分析。(54)尽管目前SECCM的发展将腐蚀研究推向了微观和纳米级电化学成像的新时代,但遗憾的是,对其技术特征的全面概述仍然很少找到。为了提高SECCM在腐蚀研究领域的实用性,澄清使用该方法进行腐蚀测试时面临的挑战及其解决方案至关重要。

从这个角度出发,系统地总结了SECCM的发展及其在腐蚀研究中的最新应用。此外,还讨论了与金属材料腐蚀密切相关的SECCM仪器、表征和数据分析方面的挑战。展望了SECCM在腐蚀研究中的应用前景,并对SECCM在腐蚀研究中的推广应用提出了建议。

SECCM的发展

随着MCC技术在微电化学领域的广泛应用,SMCM方法(图1A-i)采用单通道探针,并于2009年首次引入高分辨率(压电)定位系统,用于电化学成像。(37)如图1A所示,在过去十年中,进行了几次升级,进一步提高了技术并提供了多种功能。为了测量局部电化学特性和表面形貌,P.R. Unwin等人(40)设计了一种双管移液器SECCM(图1A-ii),该移液器可以利用在两个准参考对电极(qrce)之间流动的离子电导电流(iAC)的交流分量的反馈信号来调节探针与衬底表面之间的距离。2014年,Takahashi等人(55)重新引入了跳变模式的单通道探针(Φ 100 nm)(图1A-iii),用于检测接近阈值(2 pA)作为地形成像的反馈信号。为了实现更快扫描速率的电化学成像,2015年开发了基于恒定模式的阿基米德螺旋扫描模式(如图1A-iv所示)。(56) SECCM在控流模式(计时电位)下的操作于2019年推出,如图1A-vi所示。(57)最近对SECCM技术进行了修改,以改进其功能。2020年,Oil-SECCM(47,58)(图1A-viii)被引入,以进行长期腐蚀研究。随后,在2021年,加压SECCM(图1A-ix)被开发出来,以提高成像稳定性,(59)和全固体SECCM(图1A-xi)被引入,以提高液滴的稳定性。(39)此外,还为各种研究开发了其他功能性seccm。例如,用于电催化行为研究的光学靶SECCM(如图1A-v所示),(60)用于绘制零电荷电位的偏置调制SECCM(图1A-vii),(61)以及用于分析局部阻抗的扫描电化学电池阻抗显微镜(图1A-x)。(54) SECCM作为一个强大的平台,与干涉反射显微镜(IRM)、(62)三维x射线布拉格相干衍射成像(BCDI)、(63)等技术相结合,实现了特定的功能。

通过对近年来发表的论文数量的总结,可以很好地了解SECCM技术的研究趋势和最新进展。图1B显示了2012年至2018年相对稳定的出版物数量,随后从2019年到2021年略有增长,2022年急剧增长。涉及SECCM的研究主要集中在电催化、(57,64,65)电荷转移动力学、(61,66,67)电化学沉积、(68−70)和表面图案等主题上。(71,72)相比之下,直到2019年,与金属材料腐蚀行为相关的文章才开始引起人们的关注。在SECCM中,直径为1-1000纳米的玻璃移液器通常用于释放液滴。(73)图1C所示的统计数据表明,开口直径在数百纳米到几微米之间的单通道移液器被使用得最多。只有少数研究在纳米seccm(单管探针)中实现了低于50 nm的分辨率,而微seccm中使用的探针的最大直径约为80 μm。(62)所使用探针的下限主要由研究小组开发的仪器的仪器能力/复杂程度和当前分辨率来确定。使用更小的移液器(Φ

SECCM在腐蚀研究中的应用

SECCM是一种强大的方法,可以使用移动的、受限的微或纳米电化学电池,对异质材料表面的局部电化学性质(活性)进行高分辨率的映射。尽管SECCM广泛应用于微纳米电化学分析,但直到2019年,SECCM才被用于研究金属的腐蚀行为。表1总结了用SECCM对多种金属材料的腐蚀行为研究,包括多晶Pd、(75)Ag、(76、77)Ni、(78)Zn、(58)Cu、(79、80)单晶Mg(0001)、(54)和合金,如低碳钢、(52、81、82)Ag - Cu合金、(83)Mg - al扩散偶联、(84)316L不锈钢、(85)铝合金、(47、86、87)和不锈钢444粉末。(88)结合其他技术,如电子后向散射衍射(EBSD)和原子力显微镜(AFM), SECCM已成为腐蚀研究的理想技术。这些技术已被用于分析阳极和阴极过程的动力学(58,75,81),以及表面氧化物的点蚀(78)和微观结构/成分相关的电化学活性。(52,76,80,83,84,86,87)此外,还报道了适用于长期腐蚀测试的技术,(47,54)测试参数对局部电化学测量的影响,(82,87)以及腐蚀研究的大数据收集和分析。SECCM提供卓越的空间分辨率(目前腐蚀研究中使用的最小探针直径为150 nm(52,58))和快速扫描速度(最大扫描速率为10 V/s)。

此外,SECCM支持数百到数千个测试的高通量表征,如表1所示。在引入Oil-SECCM之前,局部电化学测试通常在低蒸汽压和低浓度(mM)的中性或酸性溶液中进行,例如KCl乙二醇,(84)H2SO4, (52,75,81) HClO4,(76,78)和KNO3溶液,(82)使用开口直径从150到2000 nm的单管探针。为了实现高通量表征和研究微观结构与电化学活性的关系,采用了高扫描速度(0.5-10 V/s)的伏安法和短测试时间(例如,每个测试点1秒)的计时安培法等技术来减少总测试时间。然而,这些测量并不是在所谓的稳定状态,因为瞬态条件盛行。例如,大多数偏振测试都是在没有OCP测试的情况下进行的。为了延长稳态测量的测试时间(换句话说,液滴的稳定性),Li及其同事于2020年提出了Oil-SECCM。他们在样品表面覆盖了一层薄薄的矿物油,作为防止蒸发的保护屏障,液滴被限制住,避免在腐蚀的基底上扩散。该方法可以在标准腐蚀电解质(特别是3.5 wt % NaCl溶液)中进行持续20小时以上的长期腐蚀测试。此外,还提出了EIS测试的配置(54),从而可以使用SECCM进行所有传统的腐蚀电化学测试。

SECCM在腐蚀研究中的挑战

与电催化、电沉积或表面图案化研究不同,金属材料的腐蚀研究具有特殊的特点。具体来说,金属材料的腐蚀行为与环境有关。不同的条件可能使材料从腐蚀转变为保护,反之亦然。例如,在室温下,不锈钢在盐水中会腐蚀,而在硝酸溶液中则会钝化。(90)此外,为了全面了解腐蚀行为,在稳态条件下进行电化学测试至关重要。这就需要延长OCP测试时间以达到稳定状态,并且在极化过程中需要缓慢的扫描速率。因此,在尝试使用SECCM进行腐蚀电化学测量时,可能会遇到更多的挑战,特别是对于一些活性表面。这可能是SECCM在2019年之前未用于金属和合金腐蚀研究的原因。近年来,采用SECCM进行腐蚀实验的方法有两种:一种是金属/液/气界面,另一种是金属/液/油界面。先前的综述概述了SECCM在微纳米电化学中的优点和局限性,(36)而其在腐蚀研究中的应用并没有详细说明;需要进一步总结和审议。下面的讨论重点是在使用SECCM进行腐蚀研究时遇到的挑战,例如探头制作、液滴稳定性、QRCE可靠性、欧姆液滴效应、测试参数选择和数据分析。此外,还提出了改善这些问题的具体策略。

SECCM仪器和探头制造

扫描探针显微镜(如SECM和SICM)的专用仪器和相应的软件已经达到一定的成熟度。(37)它已并入商业SECCM系统。(91)尽管取得了进展,但短距离的先进控制,特别是在微纳米尺度上,仍然是一个挑战。通过最小化探头直径,探头可能堵塞或断裂的可能性急剧增加,这被认为是扫描失败。(92)事实上,典型SECCM扫描的成功率很少有报道。在某些情况下,成功率在52% ~ 78%之间。(85,92)这可能是研究中很少使用直径小于50纳米的探针的原因之一(图1C)。为了提高成功率,文献中提出了多种优化策略(如软件自适应、噪声隔离、实验硬件控制和移液管制造优化)。(93)

在SECCM测量中,玻璃毛细血管的制造仍然是初学者的入门级技能和经验。这种制造过程包括使用激光拉拔器拉玻璃管,将其外壁硅化(在某些情况下是不必要的步骤),并注入电解质溶液。参考前人的经验和技能,(48,87,94 - 97)这不再是一个挑战。在此,需要强调的是,为了实现高精度的测量,需要更多地关注纳米探针的几何形状

Analytical ChemistryVol 95/Issue 43Article

PERSPECTIVEOctober 16, 2023

Perspectives on Corrosion Studies Using Scanning Electrochemical Cell Microscopy: Challenges and Opportunities

Zhaogui LaiMin LiuPeng BiFeifei HuangYing Jin*

This article references 166 other publications. Here 100 presented.

1Raabe, D.; Mianroodi, J. R.; Neugebauer, J. Accelerating the design of compositionally complex materials via physics-informed artificial intelligence. Nat. Comput. Sci. 2023, 3, 198– 209, DOI: 10.1038/s43588-023-00412-7

2Jin, Y. J. Y.; Liu, M. L. M.; Zhang, C. Z. C.; Leygraf, C. L. C.; Wen, L. W. L.; Pan, J. P. J. First-principle calculation of Volta potential of intermetallic particles in aluminum alloys and practical implications. J. Electrochem. Soc. 2017, 164, C465– C473, DOI: 10.1149/2.0191709jes

3Liu, M.; Jin, Y.; Pan, J.; Leygraf, C. Co-adsorption of H2O, OH, and Cl on aluminum and intermetallic surfaces and its effects on the work function studied by DFT calculations. Molecules 2019, 24, 4284, DOI: 10.3390/molecules24234284

4Andreatta, F.; Terryn, H.; de Wit, J. H. W. Effect of solution heat treatment on galvanic coupling between intermetallics and matrix in AA 7075-T6. Corros. Sci. 2003, 45, 1733– 1746, DOI: 10.1016/S0010-938X(03)00004-0

5Örnek, C.; Liu, M.; Pan, J.; Jin, Y.; Leygraf, C. Volta potential evolution of intermetallics in aluminum alloy microstructure under thin aqueous adlayers: a combined DFT and experimental study. Top. Catal. 2018, 61, 1169– 1182, DOI: 10.1007/s11244-018-0939-9

6Li, G.; Wang, L.; Wu, H.; Liu, C.; Wang, X.; Cui, Z. Dissolution kinetics of the sulfide-oxide complex inclusion and resulting localized corrosion mechanism of X70 steel in deaerated acidic environment. Corros. Sci. 2020, 174, 108815 DOI: 10.1016/j.corsci.2020.108815

7Anantha, K. H.; Örnek, C.; Ejnermark, S.; Medvedeva, A.; Sjöström, J.; Pan, J. Correlative microstructure analysis and in situ corrosion study of AISI 420 martensitic stainless steel for plastic molding applications. J. Electrochem. Soc. 2017, 164, C85– C93, DOI: 10.1149/2.0531704jes

8Ji, Y.; Xu, Y.; Zhang, B.; Behnamian, Y.; Xia, D.; Hu, W. Review of micro-scale and atomic-scale corrosion mechanisms of second phases in aluminum alloys. T. Nonferr. Metal. Soc. 2021, 31, 3205– 3227, DOI: 10.1016/S1003-6326(21)65727-8

9Bettayeb, M.; Maurice, V.; Klein, L. H.; Lapeire, L.; Verbeken, K.; Marcus, P. Nanoscale intergranular corrosion and relation with grain boundary character as studied in situ on copper. J. Electrochem. Soc. 2018, 165, C835– C841, DOI: 10.1149/2.1341811jes

10Seyeux, A.; Maurice, V.; Klein, L. H.; Marcus, P. Initiation of localized corrosion at the nanoscale by competitive dissolution and passivation of nickel surfaces. Electrochim. Acta 2008, 54, 540– 544, DOI: 10.1016/j.electacta.2008.07.033

11Zhou, Y. T.; Zan, Y. N.; Wang, Q. Z.; Xiao, B. L.; Ma, Z. Y.; Ma, X. L. Atomic-scale quasi in-situ TEM observation on the redistribution of alloying element Cu in a B4C/Al composite at the initial stage of corrosion. Corros. Sci. 2020, 174, 108808 DOI: 10.1016/j.corsci.2020.108808

12Narayanan, B.; Deshmukh, S. A.; Sankaranarayanan, S. K.; Ramanathan, S. Strong correlations between structural order and passive state at water–copper oxide interfaces. Electrochim. Acta 2015, 179, 386– 393, DOI: 10.1016/j.electacta.2015.03.221

13Zhu, Y.; Qiao, H.; Zhou, X.; Zhang, R.; Wang, H.; Sun, S.; Zhang, T. Charge-dependent deposition/dissolution of Cu on different faces in a non-corrosive electrolyte: An insight from multiscale calculations. Surf. Sci. 2022, 725, 122160 DOI: 10.1016/j.susc.2022.122160

14Sun, J.; Tang, H.; Wang, C.; Han, Z.; Li, S. Effects of alloying elements and microstructure on stainless steel corrosion: A review. Steel Res. Int. 2022, 93, 2100450 DOI: 10.1002/srin.202100450

15Trisnanto, S. R.; Wang, X.; Brochu, M.; Omanovic, S. Effects of crystallographic orientation on the corrosion behavior of stainless steel 316L manufactured by laser powder bed fusion. Corros. Sci. 2022, 196, 110009 DOI: 10.1016/j.corsci.2021.110009

16Ma, H.; Chen, X.; Li, R.; Wang, S.; Dong, J.; Ke, W. First-principles modeling of anisotropic anodic dissolution of metals and alloys in corrosive environments. Acta Mater. 2017, 130, 137– 146, DOI: 10.1016/j.actamat.2017.03.027

17Li, Y.; Hu, R.; Wang, J.; Huang, Y.; Lin, C. Corrosion initiation of stainless steel in HCl solution studied using electrochemical noise and in-situ atomic force microscope. Electrochim. Acta 2009, 54, 7134– 7140, DOI: 10.1016/j.electacta.2009.07.042

18Lapeire, L.; Martinez Lombardia, E.; Verbeken, K.; De Graeve, I.; Kestens, L.A.I.; Terryn, H. Effect of neighboring grains on the microscopic corrosion behavior of a grain in polycrystalline copper. Corros. Sci. 2013, 67, 179– 183, DOI: 10.1016/j.corsci.2012.10.017

19Maurice, V.; Marcus, P. Progress in corrosion science at atomic and nanometric scales. Prog. Mater. Sci. 2018, 95, 132– 171, DOI: 10.1016/j.pmatsci.2018.03.001

20Ma, Y.; Zhou, X.; Liao, Y.; Yi, Y.; Wu, H.; Wang, Z.; Huang, W. Localised corrosion in AA 2099-T83 aluminium-lithium alloy: The role of grain orientation. Corros. Sci. 2016, 107, 41– 48, DOI: 10.1016/j.corsci.2016.02.018

21Kosari, A.; Zandbergen, H.; Tichelaar, F.; Visser, P.; Terryn, H.; Mol, A. Application of in situ liquid cell transmission Electron microscopy in corrosion studies: a critical review of challenges and achievements. Corrosion 2020, 76, 4– 17, DOI: 10.5006/3369

22Kosari, A.; Zandbergen, H.; Tichelaar, F.; Visser, P.; Taheri, P.; Terryn, H.; Mol, J. In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagation. Corros. Sci. 2020, 177, 108912 DOI: 10.1016/j.corsci.2020.108912

23Revilla, R. I. Methods─On the application of ambient scanning Kelvin probe force microscopy to understand micro-galvanic corrosion phenomena: interpretation and challenges. J. Electrochem. Soc. 2023, 170, 011501 DOI: 10.1149/1945-7111/acafab

24Örnek, C.; Leygraf, C.; Pan, J. On the Volta potential measured by SKPFM─fundamental and practical aspects with relevance to corrosion science. Corros. Eng., Sci. Technol. 2019, 54, 185– 198, DOI: 10.1080/1478422X.2019.1583436

25Renner, F. U.; Stierle, A.; Dosch, H.; Kolb, D. M.; Lee, T.; Zegenhagen, J. Initial corrosion observed on the atomic scale. Nature 2006, 439, 707– 710, DOI: 10.1038/nature04465

26Brewick, P. T.; Kota, N.; Lewis, A. C.; DeGiorgi, V. G.; Geltmacher, A. B.; Qidwai, S. M. Microstructure-sensitive modeling of pitting corrosion: Effect of the crystallographic orientation. Corros. Sci. 2017, 129, 54– 69, DOI: 10.1016/j.corsci.2017.09.009

27Bard, A. J.; Mirkin, M. V. Scanning Electrochemical Microscopy; CRC Press: New York, 2022.

28Bastos, A. C.; Quevedo, M. C.; Karavai, O. V.; Ferreira, M. On the application of the scanning vibrating electrode technique (SVET) to corrosion research. J. Electrochem. Soc. 2017, 164, C973– C990, DOI: 10.1149/2.0431714jes

29Shkirskiy, V.; Kang, M.; McPherson, I. J.; Bentley, C. L.; Wahab, O. J.; Daviddi, E.; Colburn, A. W.; Unwin, P. R. Electrochemical impedance measurements in scanning ion conductance microscopy. Anal. Chem. 2020, 92, 12509– 12517, DOI: 10.1021/acs.analchem.0c02358

30Matsuoka, R.; Aoyagi, S.; Matsumoto, N.; Matsudaira, M.; Takahashi, Y.; Kumatani, A.; Ida, H.; Munakata, H.; Iida, K.; Shiku, H. Advanced scanning electrochemical microscope system for high-resolution imaging and electrochemical applications. Electrochemistry 2017, 85, 319– 326, DOI: 10.5796/electrochemistry.85.319

31Apachitei, I.; Fratila-Apachitei, L. E.; Duszczyk, J. Microgalvanic activity of an Mg–Al–Ca-based alloy studied by scanning Kelvin probe force microscopy. Scripta Mater. 2007, 57, 1012– 1015, DOI: 10.1016/j.scriptamat.2007.08.002

32Pawar, S.; Slater, T.; Burnett, T. L.; Zhou, X.; Scamans, G. M.; Fan, Z.; Thompson, G. E.; Withers, P. J. Crystallographic effects on the corrosion of twin roll cast AZ31 Mg alloy sheet. Acta Mater. 2017, 133, 90– 99, DOI: 10.1016/j.actamat.2017.05.027

33Martinez-Lombardia, E.; Maurice, V.; Lapeire, L.; De Graeve, I.; Verbeken, K.; Kestens, L.; Marcus, P.; Terryn, H. In situ scanning tunneling microscopy study of grain-dependent corrosion on microcrystalline copper. J. Phys. Chem. C 2014, 118, 25421– 25428, DOI: 10.1021/jp507089f

34Luo, J.; Hein, C.; Pierson, J.; Mücklich, F. Localised corrosion attacks and oxide growth on copper in phosphate-buffered saline. Mater. Charact. 2019, 158, 109985 DOI: 10.1016/j.matchar.2019.109985

35Ebejer, N.; Güell, A. G.; Lai, S. C.; McKelvey, K.; Snowden, M. E.; Unwin, P. R. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 2013, 6, 329– 351, DOI: 10.1146/annurev-anchem-062012-092650

36Lai, Z.; Li, D.; Cai, S.; Liu, M.; Huang, F.; Zhang, G.; Wu, X.; Jin, Y. Small-Area Techniques for Micro-and Nanoelectrochemical Characterization: A Review. Anal. Chem. 2023, 95, 357– 373, DOI: 10.1021/acs.analchem.2c04551

37Williams, C. G.; Edwards, M. A.; Colley, A. L.; Macpherson, J. V.; Unwin, P. R. Scanning micropipet contact method for high-resolution imaging of electrode surface redox activity. Anal. Chem. 2009, 81, 2486– 2495, DOI: 10.1021/ac802114r

38Zhan, D.; Yang, D.; Yin, B.; Zhang, J.; Tian, Z. Electrochemical behaviors of single microcrystals of iron hexacyanides/NaCl solid solution. Anal. Chem. 2012, 84, 9276– 9281, DOI: 10.1021/ac302053x

39Jin, R.; Lu, H.; Cheng, L.; Zhuang, J.; Jiang, D.; Chen, H. Highly spatial imaging of electrochemical activity on the wrinkles of graphene using all-solid scanning electrochemical cell microscopy. Fundam. Res. 2022, 2, 193– 197, DOI: 10.1016/j.fmre.2021.08.001

40Ebejer, N.; Schnippering, M.; Colburn, A. W.; Edwards, M. A.; Unwin, P. R. Localized high- resolution electrochemistry and multifunctional imaging: Scanning electrochemical cell microscopy. Anal. Chem. 2010, 82, 9141– 9145, DOI: 10.1021/ac102191u

41Unwin, P. R.; Guell, A. G.; Zhang, G. Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 2016, 49, 2041– 2048, DOI: 10.1021/acs.accounts.6b00301

42Bandarenka, A. S.; Ventosa, E.; Maljusch, A.; Masa, J.; Schuhmann, W. Techniques and methodologies in modern electrocatalysis: evaluation of activity, selectivity and stability of catalytic materials. Analyst 2014, 139, 1274– 1291, DOI: 10.1039/c3an01647a

43Zhan, D.; Yang, D.; Zhu, Y.; Wu, X.; Tian, Z. Fabrication and characterization of nanostructured ZnO thin film microdevices by scanning electrochemical cell microscopy. Chem. Commun. 2012, 48, 11449– 11451, DOI: 10.1039/c2cc35809c

44Zhan, D.; Han, L.; Zhang, J.; He, Q.; Tian, Z.; Tian, Z. Electrochemical micro/nano-machining: principles and practices. Chem. Soc. Rev. 2017, 46, 1526– 1544, DOI: 10.1039/C6CS00735J

45Daviddi, E.; Gaudin, L. F.; Bentley, C. L. Scanning electrochemical cell microscopy: High-resolution structure–property studies of mono-and polycrystalline electrode materials. Current

46Xu, X.; Valavanis, D.; Ciocci, P.; Confederat, S.; Marcuccio, F.; Lemineur, J.; Actis, P.; Kanoufi, F.; Unwin, P. R. The new era of high-throughput nanoelectrochemistry. Anal. Chem. 2023, 95, 319– 356, DOI: 10.1021/acs.analchem.2c05105

47Li, Y.; Morel, A.; Gallant, D.; Mauzeroll, J. Oil-immersed scanning micropipette contact method enabling long-term corrosion mapping. Anal. Chem. 2020, 92, 12415– 12422, DOI: 10.1021/acs.analchem.0c02177

48Yule, L. C. High Resolution Electrochemical Measurements for Corrosion; Ph.D. Thesis; University of Warwick, 2019.

49Li, Y.; Morel, A.; Gallant, D.; Mauzeroll, J. Ag+ Interference from Ag/AgCl wire quasi-reference counter electrode inducing corrosion potential shift in an oil-immersed scanning micropipette contact method measurement. Anal. Chem. 2021, 93, 9657– 9662, DOI: 10.1021/acs.analchem.1c01045

50Mariano, R. G.; McKelvey, K.; White, H. S.; Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 2017, 358, 1187– 1192, DOI: 10.1126/science.aao3691

51Blount, B.; Juarez, G.; Wang, Y.; Ren, H. iR drop in scanning electrochemical cell microscopy. Faraday Discuss. 2022, 233, 149– 162, DOI: 10.1039/D1FD00046B

52Yule, L. C.; Shkirskiy, V.; Aarons, J.; West, G.; Shollock, B. A.; Bentley, C. L.; Unwin, P. R. Nanoscale electrochemical visualization of grain-dependent anodic iron dissolution from low carbon steel. Electrochim. Acta 2020, 332, 135267 DOI: 10.1016/j.electacta.2019.135267

53Wang, Y.; Li, M.; Ren, H. Voltammetric mapping of hydrogen evolution reaction on Pt locally via scanning electrochemical cell microscopy. ACS Meas. Sci. Au 2022, 2, 304– 308, DOI: 10.1021/acsmeasuresciau.2c00012

54Prabhakaran, V.; Kalsar, R.; Strange, L.; Marina, O. A.; Prabhakaran, R.; Joshi, V. V. Understanding localized corrosion on metal surfaces using scanning electrochemical cell impedance microscopy (SECCIM). J. Phys. Chem. C 2022, 126, 12519– 12526, DOI: 10.1021/acs.jpcc.2c03807

55Takahashi, Y.; Kumatani, A.; Munakata, H.; Inomata, H.; Ito, K.; Ino, K.; Shiku, H.; Unwin, P. R.; Korchev, Y. E.; Kanamura, K.; Matsue, T. Nanoscale visualization of redox activity at lithium-ion battery cathodes. Nat. Commun. 2014, 5, 5450, DOI: 10.1038/ncomms6450

56Momotenko, D.; Byers, J. C.; McKelvey, K.; Kang, M.; Unwin, P. R. High-speed electrochemical imaging. ACS Nano 2015, 9, 8942– 8952, DOI: 10.1021/acsnano.5b02792

57Daviddi, E.; Gonos, K. L.; Colburn, A. W.; Bentley, C. L.; Unwin, P. R. Scanning electrochemical cell microscopy (SECCM) chronopotentiometry: development and applications in electroanalysis and electrocatalysis. Anal. Chem. 2019, 91, 9229– 9237, DOI: 10.1021/acs.analchem.9b02091

58Shkirskiy, V.; Yule, L. C.; Daviddi, E.; Bentley, C. L.; Aarons, J.; West, G.; Unwin, P. R. Nanoscale scanning electrochemical cell microscopy and correlative surface structural analysis to map anodic and cathodic reactions on polycrystalline Zn in acid media. J. Electrochem. Soc. 2020, 167, 041507 DOI: 10.1149/1945-7111/ab739d

59Zhuang, J.; Wang, Z.; Zheng, Q.; Liao, X. Scanning electrochemical cell microscopy stable imaging method with a backpressure at the back of its nanopipet. Ieee Sens. J. 2021, 21, 5240– 5248, DOI: 10.1109/JSEN.2020.3032425

60Saha, P.; Hill, J. W.; Walmsley, J. D.; Hill, C. M. Probing electrocatalysis at individual Au nanorods via correlated optical and electrochemical measurements. Anal. Chem. 2018, 90, 12832– 12839, DOI: 10.1021/acs.analchem.8b03360

61Wang, Y.; Gordon, E.; Ren, H. Mapping the potential of zero charge and electrocatalytic activity of metal-electrolyte interface via a grain-by-grain approach. Anal. Chem. 2020, 92, 2859– 2865, DOI: 10.1021/acs.analchem.9b05502

62Valavanis, D.; Ciocci, P.; Meloni, G. N.; Morris, P.; Lemineur, J.; McPherson, I. J.; Kanoufi, F.; Unwin, P. R. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss. 2022, 233, 122– 148, DOI: 10.1039/D1FD00063B

63Sheyfer, D.; Mariano, R. G.; Kawaguchi, T.; Cha, W.; Harder, R. J.; Kanan, M. W.; Hruszkewycz, S. O.; You, H.; Highland, M. J. Operando nanoscale imaging of electrochemically induced strain in a locally polarized Pt grain. Nano Lett. 2023, 23, 1– 7, DOI: 10.1021/acs.nanolett.2c01015

64Godeffroy, L.; Lemineur, J. F.; Shkirskiy, V.; Miranda Vieira, M.; Noël, J. M.; Kanoufi, F. Bridging the gap between single nanoparticle imaging and global electrochemical response by correlative microscopy assisted by machine vision. Small Methods 2022, 6, 2200659 DOI: 10.1002/smtd.202200659

65Li, M.; Ye, K.; Qiu, W.; Wang, Y.; Ren, H. Heterogeneity between and within single hematite nanorods as electrocatalysts for oxygen evolution reaction. J. Am. Chem. Soc. 2022, 144, 5247– 5252, DOI: 10.1021/jacs.2c00506

66Patten, H. V.; Meadows, K. E.; Hutton, L. A.; Iacobini, J. G.; Battistel, D.; McKelvey, K.; Colburn, A. W.; Newton, M. E.; Macpherson, J. V.; Unwin, P. R. Electrochemical mapping reveals direct correlation between heterogeneous electron-transfer kinetics and local density of states in diamond electrodes. Angew. Chem., Int. Ed. 2012, 51, 7002– 7006, DOI: 10.1002/anie.201203057

67Liu, D.-Q.; Kang, M.; Perry, D.; Chen, C.-H.; West, G.; Xia, X.; Chaudhuri, S.; Laker, Z. P. L.; Wilson, N. R.; Meloni, G. N.; Melander, M. M.; Maurer, R. J.; Unwin, P. R. Adiabatic versus non-adiabatic electron transfer at 2D electrode materials. Nat. Commun. 2021, 12, 7110, DOI: 10.1038/s41467-021-27339-9

68Lai, S. C.; Lazenby, R. A.; Kirkman, P. M.; Unwin, P. R. Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces. Chem. Sci. 2015, 6, 1126– 1138, DOI: 10.1039/C4SC02792B

69Aaronson, B. D.; Garoz-Ruiz, J.; Byers, J. C.; Colina, A.; Unwin, P. R. Electrodeposition and screening of photoelectrochemical activity in conjugated polymers using scanning electrochemical cell microscopy. Langmuir 2015, 31, 12814– 12822, DOI: 10.1021/acs.langmuir.5b03316

70Hu, J.; Yu, M. Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 2010, 329, 313– 316, DOI: 10.1126/science.1190496

71Liao, X.; Zhuang, J.; Yang, J.; Cheng, L.; Zheng, Q.; Li, J.; Yuan, W. Large-scale micropillar 3D patterning with high-aspect ratio using a theta-Pipette. Adv. Eng. Mater. 2022, 24, 2100990 DOI: 10.1002/adem.202100990

72Oseland, E. E.; Ayres, Z. J.; Basile, A.; Haddleton, D. M.; Wilson, P.; Unwin, P. R. Surface patterning of polyacrylamide gel using scanning electrochemical cell microscopy (SECCM). Chem. Commun. 2016, 52, 9929– 9932, DOI: 10.1039/C6CC05153G

73Jaouen, K.; Henrotte, O.; Campidelli, S.; Jousselme, B.; Derycke, V.; Cornut, R. Localized electrochemistry for the investigation and the modification of 2D materials. Appl. Mater. Today 2017, 8, 116– 124, DOI: 10.1016/j.apmt.2017.05.001

74Gao, R.; Edwards, M. A.; Harris, J. M.; White, H. S. Shot noise sets the limit of quantification in electrochemical measurements. Curr. Opin. Electrochem. 2020, 22, 170– 177, DOI: 10.1016/j.coelec.2020.05.010

75Yule, L. C.; Daviddi, E.; West, G.; Bentley, C. L.; Unwin, P. R. Surface microstructural controls on electrochemical hydrogen absorption at polycrystalline palladium. J. Electroanal. Chem. 2020, 872, 114047 DOI: 10.1016/j.jelechem.2020.114047

76Wang, Y.; Li, M.; Gordon, E.; Ye, Z.; Ren, H. Nanoscale colocalized electrochemical and structural mapping of metal dissolution reaction. Anal. Chem. 2022, 94, 9058– 9064, DOI: 10.1021/acs.analchem.2c01283

77Wang, Y.; Li, M.; Ren, H. Interfacial structure and energy determine the heterogeneity in the electrochemical metal dissolution activity at grain boundary. Chem. Mater. 2023, 35, 4243– 4249, DOI: 10.1021/acs.chemmater.3c00220

78Li, M.; Wang, Y.; Blount, B.; Gordon, E.; Muñoz-Castañeda, J. A.; Ye, Z.; Ren, H. Stochastic local breakdown of oxide film on Ni from identical-location imaging: one single site at a time. Nano Lett. 2022, 22, 6313– 6319, DOI: 10.1021/acs.nanolett.2c02018

79Daviddi, E.; Shkirskiy, V.; Kirkman, P. M.; Robin, M. P.; Bentley, C. L.; Unwin, P. R. Screening the surface structure-dependent action of a benzotriazole derivative on copper electrochemistry in a triple-phase nanoscale environment. J. Phys. Chem. C 2022, 126, 14897– 14907, DOI: 10.1021/acs.jpcc.2c04494

80Daviddi, E.; Shkirskiy, V.; Kirkman, P. M.; Robin, M. P.; Bentley, C. L.; Unwin, P. R. Nanoscale electrochemistry in a copper/aqueous/oil three-phase system: surface structure-activity-corrosion Nanoscale Colocalized potential relationships. Chem. Sci. 2021, 12, 3055– 3069, DOI: 10.1039/D0SC06516A

81Yule, L. C.; Shkirskiy, V.; Aarons, J.; West, G.; Bentley, C. L.; Shollock, B. A.; Unwin, P. R. Nanoscale active sites for the hydrogen evolution reaction on low carbon steel. J. Phys. Chem. C 2019, 123, 24146– 24155, DOI: 10.1021/acs.jpcc.9b07216

82Yule, L. C.; Bentley, C. L.; West, G.; Shollock, B. A.; Unwin, P. R. Scanning electrochemical cell microscopy: A versatile method for highly localised corrosion related measurements on metal surfaces. Electrochim. Acta 2019, 298, 80– 88, DOI: 10.1016/j.electacta.2018.12.054

83Liu, S.; Shi, M.; Zhou, Y.; Li, R.; Xie, Z.; Hu, D.; Zhang, M.; Hu, G. Scanning electrochemical cell microscopy: a powerful method to study the intergranular corrosions of archaeological silver artifacts. J. Cult. Herit. 2020, 46, 176– 183, DOI: 10.1016/j.culher.2020.07.004

84Gateman, S. M.; Georgescu, N. S.; Kim, M.; Jung, I.; Mauzeroll, J. Efficient measurement of the influence of chemical composition on corrosion: analysis of an Mg-Al diffusion couple using scanning micropipette contact method. J. Electrochem. Soc. 2019, 166, C624– C630, DOI: 10.1149/2.0681916jes

85Coelho, L. B.; Torres, D.; Bernal, M.; Paldino, G. M.; Bontempi, G.; Ustarroz, J. Probing the randomness of the local current distributions of 316 L stainless steel corrosion in NaCl solution. Corros. Sci. 2023, 217, 111104 DOI: 10.1016/j.corsci.2023.111104

86Li, Y.; Morel, A.; Gallant, D.; Mauzeroll, J. Correlating corrosion to surface grain orientations of polycrystalline aluminum alloy by scanning electrochemical cell Microscopy. ACS Appl. Mater. Interfaces 2022, 14, 47230– 47236, DOI: 10.1021/acsami.2c12813

87Li, Y.; Morel, A.; Gallant, D.; Mauzeroll, J. Controlling surface contact, oxygen transport, and pitting of surface oxide via single-channel scanning electrochemical cell microscopy. Anal. Chem. 2022, 94, 14603– 14610, DOI: 10.1021/acs.analchem.2c02459

88Gateman, S. M. Investigating Corrosion of Simple and Complex Metallic Materials using Macro and Micro Electrochemical Techniques; Ph.D. Thesis; McGill University, 2020.

Google Scholar

89Bardal, E.; Drugli, J. M.; Gartland, P. O. The behaviour of corrosion-resistant steels in seawater: a review. Corros. Sci. 1993, 35, 257– 267, DOI: 10.1016/0010-938X(93)90157-C

90O’Laoire, C.; Timmins, B.; Kremer, L.; Holmes, J. D.; Morris, M. A. Analysis of the acid passivation of stainless steel. Anal. Lett. 2006, 39, 2255– 2271, DOI: 10.1080/00032710600755363

91Zhang, J.; Kim, B. Nanoscale Electrochemistry Study Using SECCM Option of Park Systems; In 239th ECS Meeting with the 18th International Meeting on Chemical Sensors; ECS, 2021.

Google Scholar

92Zhuang, J.; Gao, B. L.; Wang, Z. W.; Liao, X. B.; Yan, H. Chin. J. Sci. Instrum. 2019, 10, 175– 784

93Tarnev, T. H. Scanning Electrochemical Cell Microscopy as a Tool for the Evaluation of Electrocatalytic Activity at the Nanoscale; Ph.D. Thesis; Ruhr-Universität: Bochum, 2022.

94Li, Y. Developing Oil-immersed Scanning Electrochemical Cell Microscopy for Corrosion; Ph.D. Thesis; McGill University, 2022.

95Oja, S. M.; Wood, M.; Zhang, B. Nanoscale electrochemistry. Anal. Chem. 2013, 85, 473– 486, DOI: 10.1021/ac3031702

96Varhade, S.; Tetteh, E. B.; Saddeler, S.; Schumacher, S.; Aiyappa, H. B.; Bendt, G.; Schulz, S.; Andronescu, C.; Schuhmann, W. Crystal plane-related oxygen-evolution activity of single hexagonal Co3O4 spinel particles. Chem.-Eur. J. 2023, 29, e202203474 DOI: 10.1002/chem.202203474

97Oesterle, A. Pipette Cookbook 2015: P-97 & P-1000 Micropipette Pullers; Sutter Instrument: Novato, CA, 2015.

Google Scholar

98Snowden, M. E.; Guell, A. G.; Lai, S. C. S.; McKelvey, K.; Ebejer, N.; O’Connell, M. A.; Colburn, A. W.; Unwin, P. R. Scanning electrochemical cell microscopy: Theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements. Anal. Chem. 2012, 84, 2483– 2491, DOI: 10.1021/ac203195h

99Tetteh, E. B.; Banko, L.; Krysiak, O. A.; Loffler, T.; Xiao, B.; Varhade, S.; Schumacher, S.; Savan, A.; Andronescu, C.; Ludwig, A.; Schuhmann, W. Zooming-in-Visualization of active site heterogeneity in high entropy alloy electrocatalysts using scanning electrochemical cell microscopy. Electrochem. Sci. Adv. 2022, 2, e2100105 DOI: 10.1002/elsa.202100105

100Paulose Nadappuram, B.; McKelvey, K.; Byers, J. C.; Güell, A. G.; Colburn, A. W.; Lazenby, R. A.; Unwin, P. R. Quad-barrel multifunctional electrochemical and ion conductance probe for voltammetric analysis and imaging. Anal. Chem. 2015, 87, 3566– 3573, DOI: 10.1021/acs.analchem.5b00379

View

Google Scholar

2

扫描微电化学池显微镜(SECCM)技术,作为一种新兴超微探针技术,近年来被广泛应用于催化剂、储能材料、电化学成像及表面微修饰等研究领域,表现出了极高的微区电化学分辨率。基于此,北京大学考古文博学院文物保护课题组与北京科技大学化学与生物工程学院开展深度合作,探究SECCM技术在金属文物腐蚀机理/缓蚀材料研究中的应用可行性和发展前景。近日,研究小组利用SECCM技术,对四种常用银质文物缓蚀剂:苯并三氮唑(BTA)、2-巯基苯并咪唑(MBI)、2-巯基苯并噻唑(MBT)及2-巯基苯并恶唑(MBO)的缓蚀效果进行了评估,结合XPS技术深度解析银质文物材料表面的化学状态,探讨缓蚀保护机理,靶向筛选出了可分别针对银器腐蚀变色与晶间腐蚀的缓蚀材料,为金属文物缓蚀材料的研究提供了全新的思路。该工作以“Microscale Corrosion Inhibition Behavior of Four Corrosion Inhibitors (BTA, MBI, MBT, and MBO) on Archeological Silver Artifacts Based on Scanning Electrochemical Cell Microscopy”为题,于2023年10月3日发表在国际顶级学术期刊Analytical Chemistry,并入选封面文章。

北京大学考古文博学院副教授胡钢、博士后刘晟宇,以及北京科技大学教授张美芹为该文章的共同通讯作者,北京科技大学化学与生物工程学院孙祥玉,北京大学考古文博学院胡东波教授和胡沛、孙思原,清华大学高等研究院解振达为论文共同作者。

来源:迪新材料科普南乔

相关推荐