摘要:本文,上海理工大学Dawei Zhang、Bin Sheng等研究人员在《J. Mater. Chem. C 》期刊发表名为“Flexible capacitive pressure sensor with chemically reduced graphen
1成果简介
本文,上海理工大学Dawei Zhang、Bin Sheng等研究人员在《J. Mater. Chem. C 》期刊发表名为“Flexible capacitive pressure sensor with chemically reduced graphene oxide on a pyramid-structured melamine sponge array by laser engraving”的论文,研究提出一种基于金字塔结构的三聚氰胺海绵(MSponge)介电层,通过简易激光雕刻制备为柔性电容式压力传感器。
随后在传感器表面覆盖化学还原氧化石墨烯(rGO),显著提升其灵敏度。通过硫代硫酸钠溶液进行化学还原处理,精确调控金字塔结构MSponge上rGO的还原程度,从而实现灵敏度提升。该传感器在0-60kPa范围内展现出0.302kPa⁻¹的灵敏度(R²=0.991),具备0-150kPa的宽广测量范围;可识别低至7.1Pa的微压信号;并能应用于检测心率变化、鼓腮动作、肢体关节运动引发的信号波动,以及阵列式传感。综上所述,这些灵敏度提升策略具有广泛适用性,可推广至其他需要高灵敏度和宽线性范围的柔性传感器,从而为柔性传感技术的进一步创新和应用拓展提供了巨大潜力。
2图文导读
图1 电容式压力传感器rGMMSponge概述。
图2、Optimization of the MPAMSponge sensor. (a) Relative capacitance response of the sensor relative to heights. (b) Relative capacitance response of the sensor relative to bottom side lengths.
图3、SEM of MSponge and rGMMSponge. (a) SEM of MSponge. (b) SEM of rGMMSponge after 10 min of reduction. (c(I)) SEM of rGMMSponge after 20 min of reduction. (c(II)) SEM of rGMMSponge after 4000 cycles at 0–100 kPa. (d) SEM of rGMMSponge after 30 min of reduction.
图4、XPS spectra. XPS spectra analysis, C 1s peak fitting of (a) GO–MSponge and (c) rGO–MSponge (the reduction time was 20 min). O 1s peak fitting of (b) GO–MSponge and (d) rGO–MSponge.
图5、Sensitivity (a) and working mechanism (b) of the rGMMSponge sensor.
图6、Wearable applications of the rGMMSponge sensor. (a) Sensors for monitoring various parts of the human body, including the finger, elbow, knee, carotid artery, and cheek. (b) Finger bending. (c) Elbow bending. (d) Knee bending. (e) Pulse bending. (f) Puffing out cheeks.
图7、Applications of pressure-sensing arrays. (a) Placing a grinding bar along the diagonal. (b) Placing a cylindrical glass plate at the center. (c) Placing erasers at different locations.
3小结
研究采用简易激光雕刻技术,引入了一种由金字塔结构三聚氰胺海绵制成的创新介电层,并随后对其涂覆还原氧化石墨烯,显著提升了柔性电容式压力传感器的灵敏度。该rGMMSponge传感器在0-60kPa范围内展现出0.302kPa⁻¹的高灵敏度(相关系数R²=0.991),60-150kPa区间灵敏度达0.147kPa⁻¹,响应时间110毫秒,恢复时间160毫秒,具备快速响应特性。研究证实该传感器在可穿戴监测领域的应用潜力,可实现脉搏信号检测、颊部鼓气及关节运动监测等功能,并能精确捕捉阵列压力分布图谱以识别特定区域的压力变化。综上所述,这些成果表明我们的策略与方法不仅能推动可穿戴设备发展,更能为人类健康护理与人机融合提供先进解决方案。
文献:
DOIhttps://doi.org/10.1039/D5TC00563A来源:材料分析与应用
来源:石墨烯联盟