摘要:对生态高效储能技术日益增长的需求,要求开发兼具高性能与可持续性的电极材料。本文,东北农业大学秦丽元 教授团队在《Chemical Engineering Journal》期刊发表名为“Nitrogen-doped graphene oxide derived
1成果简介
对生态高效储能技术日益增长的需求,要求开发兼具高性能与可持续性的电极材料。本文,东北农业大学秦丽元 教授团队在《Chemical Engineering Journal》期刊发表名为“Nitrogen-doped graphene oxide derived from pine nut shell tar for supercapacitor applications”的论文,研究利用富含氮元素的可再生生物质资源——松子壳焦油,开发出合成氮掺杂氧化石墨烯(N-GO)的新型方法。通过采用纳米级氧化镁作为模板、氢氧化钾作为活化剂的两阶段碳化工艺,成功制备出比表面积达3492.55 m²/g的三维分级多孔N-GO材料。
优化材料PTNG3–18–6–900展现出卓越的电化学性能:在0.5A/g电流密度下实现391.08 F/g的比电容,经10,000次循环后仍保持98%的电容保持率。在对称超级电容器中,该材料在功率密度450 W/kg时提供21.59 Wh/kg的能量密度,经20,000次循环后仍保持95%的电容保持率。其卓越性能源于三维分级多孔石墨烯结构、双氮氧掺杂及具有适度氧官能团的部分还原氧化石墨烯框架,从而显著提升离子传输能力、导电性和电解液润湿性。该技术开创了将生物质衍生的焦油转化为高性能材料的可扩展且环保的途径。生命周期评估显示,该方法的碳足迹(4.84 kg/CO2当量)显著低于传统工艺,且比化学气相沉积法低约20,000倍,为开发新一代储能解决方案提供了可持续路径。
2图文导读
图1、Schematic of the PTNG synthesis process.
图2. (a) TG and (b) DTG curves of the precursors and (c) PTNG yields produced under various MgO ratios; (d) TG and (e) DTG curves of the precursors and (f) PTNG yields produced under various KOH ratios.
图3. (a) N2 adsorption–desorption isotherm curves, (b) Barrett–Joyner–Halenda (BJH) mesoporous distributions, and (c) Non-Local Density Functional Theory (NLDFT) micropore distributions of PTNGs; (d) effects of temperature and the KOH and MgO ratios on pore structure; and (e) schematic illustration of the synergistic effect of MgO and KOH during PTNG preparation.
图4. FESEM images of (a) PTNG3–18–6–700, (b) PTNG3–18–6–800, (c) PTNG3–18–6–900, (d) PTNG3–12–6–900, (e) PTNG3–24–6–900, (f) PTNG3–18–3–900 and (g) PTNG3–18–12–900; (h)–(j) HRTEM images and (k)–(n) EDS images of PTNG3–18–6–900.
图5. (a) XRD patterns and (b) enlarged views of PTNGs.
图6、(a) Raman results and (b) amplified 2D bands of the PTNGs.
图7、Electrochemical performance of PTNG3–18–6–900//PTNG3–18–6–900: (a) CV curves recorded at various scan rates, (b) GCD curves at various current densities, (c) cycling stability at 2 A/g (the inset shows the GCD curves of multiple cycles), (d) a Ragone plot of PTNG3–18–6–900//PTNG3–18–6–900, and (e) a radar chart comparing PTNG3–18–6–900 and GO materials from the literature in terms of Ct, the potential window, P, E and the cycling stability.
Note: Highly crumpled N-doped graphene (N-TRPG-800), B- and P-incorporated rGO (PB-rGO), ultrathin graphene-like nanosheets (LGLN900), biochar–RGO composite (BC-RGO), polyaniline and GO composite material (SPANi5/GO5), nanocellulose/N, and P-codoped rGO composites (NC-NPrGO55), titanium nitride/graphene quantum dots (TiN/GQD-15), and carbon aerogel–acetic acid (CA-AA).
3小结
本研究通过两阶段碳化工艺,以纳米级MgO和KOH分别为模板剂和活化剂,成功从松子壳焦油中合成了N-GO。在最优条件下(900℃,焦油/MgO=1:6,焦油/KOH=1:2), 该材料呈现出高度有序的三维多孔结构,具有高达3492.55 m²/g的SBET值和4.79 cm³/g的Vt值。PTNG3–18–6–900在三电极体系中展现出优异电化学性能,以0.5 A/g电流密度测得391.08 F/g的高比容量。该对称超级电容器在450 W/kg功率密度下实现21.59 Wh/kg能量密度,经20,000次循环后仍保持95%电容值。分级孔隙结构增强离子传输并暴露更多活性位点,而氮/氧杂原子掺杂则提升导电性与电解液润湿性。碳化过程中的局部热还原重建了局部sp²域,在提升导电性的同时保留了足够的氧官能团以维持假电容效应。采用松子壳焦油原料还提升了可持续性和经济性;生命周期评估显示其碳足迹低于传统氧化石墨烯制备路线。总体而言,该环保且经济高效的工艺简化了生产流程,避免了有毒氧化剂的使用及多步操作。
文献:
来源:材料分析与应用
来源:石墨烯联盟