3D打印KVPO4F/rGO气凝胶电极,用于先进钾离子电池高性能5V级阴极

B站影视 欧美电影 2025-09-09 16:50 1

摘要:本文,郑州大学徐俊敏 副教授、王新昌 教授、香港城市大学Prof. Paul K H CHU等在《Small》期刊发表名为“3D-Printed KVPO4F/rGO Aerogel Electrodes as High-Performance 5V-Clas

1成果简介

本文,郑州大学徐俊敏 副教授、王新昌 教授、香港城市大学Prof. Paul K H CHU等在《Small》期刊发表名为“3D-Printed KVPO4F/rGO Aerogel Electrodes as High-Performance 5V-Class Cathode for Advanced Potassium-Ion Battery”的论文,研究采用直接墨水书写3D打印技术,设计并制备了用于高性能钾离子电池正极的多孔KVPO4F/还原氧化石墨烯(KVPF/rGO)微网状气凝胶电极。该3D打印KVPF/rGO气凝胶电极将均匀分散的KVPO4F微球嵌入还原氧化石墨烯基体中,显著提升了结构完整性与电导率,从而促进高效的离子和电子传输。

该电极在2.0-5.0V电压范围内以50mA g⁻¹电流密度实现99.0 mAh g⁻¹的可逆放电容量。经100次循环后容量保持率达93.9%,在500 mA g−1高电流密度下仍能释放72.6 mAh g−1的容量,展现出优异的倍率性能。实验证实rGO在提升电荷转移效率及抑制极化效应方面发挥关键作用。通过制造软包电池验证了3D打印电极的柔韧性,该电池在机械应力下仍保持稳定性能,这是可穿戴电子设备的关键需求。研究结果凸显了3D打印技术在提升钾离子电池性能与柔韧性方面的巨大潜力,为未来储能设备的发展开辟了新路径。

2图文导读

图1、Schematic diagram of the fabrication process of a) KVPO4F and b) 3D-printed KVPO4F/rGO microgrid aerogel.

图2、a) XRD patterns of KVPF and KVPF/rGO; b) SEM and c) TEM images of KVPF microspheres; d) TEM image of a single KVPF microsphere with the corresponding EDS elemental maps; e1) XPS survey spectrum of KVPF and high-resolution XPS spectra of KVPF: e2) K 2p, e3) V 2p, e4) P 2p, e5) O 1s, and e6) F 1s.

图3、a) KVPF/rGO aerogel patterns printed by the 3D printing; b) Photographs of a 3D printed KVPF/rGO microgrid aerogel measuring 2.0 cm×2.0 cm; c) Images of the 3D-printed printed KVPF/rGO microgrid aerogel with different layers (3, 6, 9, and 12 layers); (d,e) SEM images of the KVPF/rGO microgrid aerogel at different magnifications; f1–f7) High-resolution SEM images of the KVPF/rGO aerogel and EDS maps of C, K, V, P, V, O, and F.

图4、a) CV profiles of the KVPF and 3D-printed KVPF/rGO electrodes at a scanning rate of 0.1 mV s−1. b) First three charging/discharging profiles of KVPF and 3D-printed KVPF/rGO at 50 mA g−1; c) Ex situ high-resolution XPS V 2p spectra of the 3D-printed KVPF/rGO cathodes in different stages.

图5、a1) In situ electrochemical impedance spectra (EIS) of the 3D-printed KVPF/rGO electrode at different charge/discharge stages; a2) The fitted values of resistances Rs and Rct derived from the EIS for 3D-printed KVPF/rGO electrode. b1) In situ electrochemical impedance spectra of the KVPF electrode at different charge/discharge stages; b2) The fitted values of resistances Rs and Rct derived from the EIS for the KVPF electrode.

图6、a) CV curves of the 3D-printed KVPF/rGO electrode at different scanning rates; b) Log(i) and log(v) plots of the 3D-printed KVPF/rGO electrode at peak currents and corresponding fitted b values; c) Capacitive contributions of the 3D-printed KVPF/rGO electrode at 1.0 mV s−1; d) Contribution ratio of the capacitive-controlled current (or capacity) at different scan rates; e) Schematic illustration of the 3D-printed KVPF/rGO aerogel electrode with the hierarchical porous framework for enhanced electrochemical potassium-ion storage.

图7、a) Schematic illustration of the soft-type KIB battery comprising the 3D-printed KVPF/rGO as the cathode; b) Schematic illustration of 3D-printed KVPF/rGO electrodes with different layers and masses; c) Practical and theoretical thicknesses of the 3D-printed electrodes as a function of the printing layer number; d) Charging–discharging curves of the 3D-printed KVPF/rGO electrodes with different layers; e) Cyling characteristics of the 3D-printed KVPF/rGO electrodes with different layers at a current density of 0.05 mA cm−2; f) Cycling stability of the soft-type KIB battery under different mechanical deformations; g1–g4) Photos of the soft-type KIB battery powering a fan under various conditions; h1–h4) Photos of the soft-type KIB battery powering an LED bulb array under various conditions.

3小结

为钾离子电池(KIBs)设计并制备了3D打印的KVPF/rGO微网状气凝胶电极。通过直接墨水书写(DIW)技术将KVPF嵌入还原氧化石墨烯(rGO)基体中,增强了结构稳定性和导电性,从而提升了离子传输效率。该电极在50 mA g⁻¹电流密度下展现99.0 mAh g⁻¹的可逆放电容量,经100次循环后容量保持率达93.9%。在500 mA g⁻¹高电流密度条件下仍保持72.6 mAh g⁻¹的放电容量。实验结果证实了rGO基体在提升电荷转移效率和降低极化效应方面的显著效果。通过制造软包电池并在不同机械变形条件下运行,验证了3D打印电极的柔韧性及其在可穿戴电子设备中的应用潜力。总体而言,本研究揭示了3D打印技术提升钾离子电池性能与柔韧性的巨大潜力,为未来储能应用领域先进材料与制造技术的探索奠定了基础。

文献:

来源:材料分析与应用

来源:石墨烯联盟

相关推荐