摘要:虽然增程式插电混合动力汽车只用电机驱动,不使用内燃发动机进行驱动,也属于串联式插电混合动力汽车的一种,但是,对于某些较为先进的增程式插电混合动力汽车而言,在不同的工作模式之下,内部各个模块之间充当的角色并不一样。
虽然增程式插电混合动力汽车只用电机驱动,不使用内燃发动机进行驱动,也属于串联式插电混合动力汽车的一种,但是,对于某些较为先进的增程式插电混合动力汽车而言,在不同的工作模式之下,内部各个模块之间充当的角色并不一样。
以雪佛兰Volt为例,其主要有以下几种工作模式:
增程式混合动力汽车雪佛兰Volt
1
EV低速模式
处于EV低速模式时,离合器C1吸合,离合器C2、C3松开,增程器停转,行星齿轮机构内的齿圈被固定,主电机MG1推动太阳轮转动,行星架因太阳轮的转动而转动,把动力传输到动力分配机构并推动车轮转动,此时发电机MG2不工作。其实,这个模式就是现在的单电机纯电动汽车的驱动方式。
EV 低速模式示意图(增程器不工作)
2
EV高速模式
处于EV高速模式时,离合器C2吸合,离合器C1、C3松开,增程器停转。发电机MG2此时充当电动机工作,推动行星齿轮机构内的齿圈转动。同时,功率较大的另一个主电机MG1推动太阳轮转动。齿圈和太阳轮同时转动,带动行星架转动,从而把动力传输到动力分配机构并推动车轮转动。这个模式就好像是运动会中的混双项目,男运动员和女运动员都可以协同发力以达目标。
EV 高速模式示意图(增程器不工作)
3
EREV混合低速模式
处于EREV混合低速模式时,离合器C1、C3吸合,离合器C2松开,增程器运转。此时,增程器带动发电机MG2发电,此时发电机MG2输出的电能一部分进入电池组为电池充电,另一部分为主电机MG1供电并推动行星齿轮机构内的太阳轮转动,由于齿圈固定,行星架跟随太阳轮转动,从而把动力传输到动力分配机构并推动车轮转动。
EREV 混合低速模式示意图(增程器工作)
4
EREV混合高速模式
处于EREV混合高速模式时,离合器C2、C3吸合,离合器C1松开,增程器运转。此时,增程器与发电机MG2转子连接后推动行星齿轮机构内的齿圈转动同时发电,主电机MG1推动太阳轮转动。齿圈和太阳轮同时转动,带动行星架转动,从而把动力传输到动力分配机构并推动车轮转动。
EREV 混合高速模式示意图(增程器工作)
5
能量回收模式
处于能量回收模式时,离合器C1吸合,离合器C2、C3松开,增程器停转,发电机MG2不工作。车轮带动行星齿轮机构内的行星架和行星轮转动,由于齿圈固定,太阳轮随着行星架转动。此时,功率较大的主电机MG1作为发电机对电池充电。
能量回收模式(增程器不工作)
值得一提的是,并非每一款增程式混合动力汽车都会和上述的五种模式一模一样,但是原理上都差不多。例如理想ONE,除了新能源汽车大都具备的能量回收模式之外,设置有纯电优先、燃油优先和油电混合三种模式。
理想 ONE 三种能源模式
在“纯电优先”模式下,理想ONE确实会优先使用动力电池里的余电,但不会一直用到电量干涸,当电量下降到20%(2020款理想ONE设置为17%)后,它的增程器便会起动,以保持电量不再降低。此时如果继续行驶,虽然是“纯电优先”模式,但增程器会持续工作,直到油箱里的汽油烧完才会允许电量继续降低。
之所以为纯电优先模式设置“电量下限”,一方面,在低电量状态下电池放电功率有衰减,会导致车辆的动力性能降低;另一方面,过低的电量会对电池寿命产生影响,尽可能避免超低电量状态有助于延长动力电池的使用寿命。因此,在家里、单位有充电条件,日常通勤使用纯电优先模式是最经济的选择。
和纯电模式不会一直用电一样,在燃油优先模式下,增程器也不是随时处于起动状态的,而是在电量处于70%或以下时才会起动。之所以有这个条件限制,是因为动力电池在电量较高时无法大功率充电(处于涓流充电状态),增程器的补能、动能回收的效率都会有所下降。在燃油优先的模式下,满电状态的理想ONE都会先跑40~50km才会起动增程器。
油电混合模式和燃油优先模式的差异主要体现在如下两点:首先,在油电混合模式下,增程器只会在电量处于80%或以下时才会起动;其次,在油电混合模式下,增程器在油电混合模式下会比燃油优先模式更“懒”一些,低速时不起动,在中高速工况下才会起动(这也是发电效率相对更高的工况)。
综合来看,对于理想ONE而言,纯电优先模式不会一直傻乎乎地把电耗尽,燃油优先和油电混合模式也会“视情况”用油,从而在保障驾驶体验、优化能耗的同时,保护电池。
——以上内容摘自《一本书看懂新能源汽车》
增程式电动汽车存在三种能量源,一是动力电池,是增程式电动汽车的主要能量源,负责以纯电动方式行驶中的能量供给;其次是增程器,作为增程式电动汽车的备用能量源,负责为动力电池及驱动电机提供能量补给;最后是驱动电机,它不仅是动力输出装置,还作为回收能量源,在制动能量回馈过程中将能量回馈至系统。
增程式电动汽车组成
增程式电动汽车动力传动系统组成如下图所示,主要由驱动电机系统、电源系统、增程器和整车控制器等组成。与纯电动汽车相比,增加了增程器。
驱动电机系统
驱动电机系统由驱动电机及电机控制器组成。与纯电动汽车相比,驱动电机能量来源除动力电池外,还有增程器。发动机与驱动电机之间无直接机械连接,而是通过发电机将发动机产生的机械能转化为电能,随后电机控制器根据车辆的实际工况需求,将电能分配给驱动电机。若存在多余的电能,则会被储存至动力电池中。
电源系统
电源系统由动力电池、电池管理系统、车载充电机等组成。与纯电动汽车相比,动力电池需同时满足纯电动和混合动力两种模式的要求,具体是,在经历深度放电后,动力电池仍能保持较长的循环寿命。在较低的SOC值状态下,可输出大功率的电能,使增程式电动汽车在低SOC下加速性能仍然良好;在高的SOC状态下,可以接收大电流充电,以保证制动能量回收的效率不受SOC状态的影响;在保持高SOC状态下,可延长其使用的寿命;能量密度及比能量高,以减小电池组的体积和重量;安全性好。
增程器
增程器(APU)由发动机、发电机及其控制器组成。增程器作为增程式电动汽车动力传动系统的核心部件,其发动机/发电机系统与驱动车轮在机械上实现解耦,发动机的转速和转矩不再直接受限于车辆的速度及牵引转矩需求,从而允许发动机在其转速-转矩平面上的任意点进行灵活控制。
增程器的主要功能是提供电能,这些电能既可直接用于驱动电机,也可为动力电池充电,从而延长电动汽车的续航里程。由于发动机与驱动电机之间不存在机械连接的动力传动路线,电能可直接用于驱动车辆,无需经过动力电池的充放电过程,有效降低了从增程器到动力电池的能量传递损耗。
根据电能来源的差异,增程器可划分为发动机/发电机组、燃料电池以及超级电容等多种类型。其中,发动机/发电机组作为增程器的形式,目前应用最为广泛且技术成熟度最高。
增程器中发动机与发电机连接方式主要有两种,即弹性联轴器结构连接和直接刚性连接件连接。前者轴线尺寸会较大,对定位安装工艺要求高;后者发电机惯量及动态加载会给轴系带来冲击,存在动力过载损坏轴系的危险。
整车控制器
整车控制器通过CAN网络与发动机控制器、发电机控制器、驱动电机控制器以及电池管理系统进行信息交互,实现增程的控制。增程器、驱动电机、动力电池三者之间通过整车控制器进行电能交互,实现能量的最优分配。同时动力电池通过车载充电机充电,保证纯电动模式下的行驶。
增程式电动汽车原理
增程式电动汽车的动力传动系统,在构成层面上,与串联插电式混合动力汽车的动力系统展现出高度的相似性。然而,其独特之处在于其能量传递路径上,虽融合了两种动力系统的特点,但仅采用了一种驱动模式,即电动机驱动,从而避免了复杂的电能与化学能之间的耦合过程。
从结构视角出发,增程式电动汽车是基于纯电动汽车平台进一步开发的产物。在此过程中,增程器的融入对原有车辆动力系统的基本架构造成的改动较为有限,确保了系统的稳定性和连续性。
“增程式电动汽车”这一命名,源于车辆内部增设了增程器这一关键组件。这一设计的初衷在于,通过增程器的辅助,显著提升纯电动汽车的续航能力,有效减少因电量耗尽而频繁停车充电的需求,从而提升用户的驾驶体验和车辆的实用性。
增程式电动汽车有5种工作模式,即纯电动模式、增程器单独驱动模式、混合驱动模式、制动模式和停车充电模式。
纯电动模式
当动力电池能量充足时,使用纯电动模式。纯电动模式的能量传递路线如下图所示,增程器处于关闭状态,动力电池是唯一的动力源,相当于一辆纯电动汽车。
增程器单独驱动模式
当动力电池能量不足时,使用增程模式。增程器单独驱动模式的能量传递路线如下图所示。在动力电池SOC值降至设定的阈值SOCmin时,增程器启动,发动机根据制定的控制策略运行在最佳的状况,使发电机发电,一部分用于驱动车辆行驶,多余的电能为动力电池充电。
当动力电池电量恢复至充足时,发动机又停止工作,继续由动力电池驱动电机,提供整车功率需求。
混合驱动模式
当路面需求功率较大,动力电池供能不足时,增程器开启,发动机-发电机组联合动力电池一起工作,提供整车行驶需要的动力,其能量传递路线如下图所示。
增程器单独驱动模式和混合驱动模式都属于增程模式。增程模式的发动机可以有多种工作方式,根据控制策略的不同,可以选择发动机恒功率模式、功率跟随模式、恒功率与功率跟随结合模式,此外还有智能控制策略和优化算法控制策略等复杂控制策模式。当车辆停止的时候,可以利用市电为动力电池充电。
制动模式
在车辆运行过程中,发生减速、制动请求时,驾驶员需要踩下制动踏板,若满足一定的条件,整车即进入制动能量回收模式;当制动强度较低、制动较为缓和、制动请求功率较小时,采用电机单独制动;当发生急减速或紧急制动时,一旦车辆的制动负载功率超出电机再生制动功率的上限,为了保护蓄电池组、限制其输入功率,此时摩擦制动器参与工作,与电机再生制动协同提供车辆的制动功率需求。制动模式的能量传递路线如下图所示。
再生制动可以将车辆的动能转化为电能储存在动力电池中,以供车辆驱动使用,提高了整车能量利用率。在再生制动情况下,电机以发电状态工作,回收的制动能量储存在动力电池中。
停车充电模式
停车充电模式的能量传递路线如下图所示。停车时动力系统全部停止,此时通过车载充电机连接外接电网对动力电池进行充电,以备下次行车使用。此模式是保证车辆大部分以纯电动方式行驶的基础,可减少燃料发动机的使用频次,能够显著降低车辆的行驶成本以及减少车辆的污染物排放。
一、增程式电动汽车概述
增程式电动汽车(Extended-Range Electric Vehicle,EREV,如图 1 所示)作为 一种带有混合动力特点的电动汽车技术,驱动原理与纯电动汽车类似,只通过电机牵引驱动,同时增设一套由内燃机和发电机组成的辅助动力系统(Auxiliary Power Union,APU)行车充电来解决纯电动车必须驻车充电的限制,消除了纯电动车受电池容量限制而导致行驶里程短的缺陷。由于增加了续驶里程,这一辅助动力组合又被 称为增程器(Range-extender,RE,如图 2 所示)。现有成果已经验证,通过优化增程器发动机的工作状态可以使节油率可达 30%以上,而电池容量却仅需纯电动车的40~50%,大幅降低了运行和制造成本;单次充电加满油后的续航里程即可达到300公里以上,更贴近用户消费需求。发动机工作状态的优化为节约化石燃料资源提供了可行性方案;电池容量设计合理的情况下能够以纯电动行驶满足大部分城市上班族的日常通勤需求,将大量减少汽车尾气排放,大规模应用可显著改善城市空气质量。
图1增程式电动汽车动力系统结构
图2 增程器内部结构(常闭离合器连接)
二、增程式电动汽车工作模式
增程式电动汽车的两个动力源——增程器和动力蓄电池使其具备了混合动力汽车和纯电动车的综合特征。电池电量(State of Charge,SOC)充足时无需增程器提供额外功率仅依靠动力电池驱动电机行驶,具有纯电动车零污染、低噪音的优点;随着行驶里程的增加,当电池电量低至某一门限值时,开启增程器发电驱动车辆,延长续驶里程。具体而言,增程式电动汽车有4 种运行模式:纯电动行驶模式、并行驱动模式、行车发电模式和制动能量回收模式,如图 3 所示。发动机主要在串联驱动模式和行车充电模式下参与工作,串联驱动经常出现在中低速加速或高速行驶时,行车充电则主要出现在中低速平稳行驶且电池 SOC 值较低时。而车辆中低速行驶时的空气噪声和轮胎噪声均不显著,增程器运行噪声尤为突出。
图3 增程式电动汽车运行模式
三、增程器振动噪声特性分析
市场常见增程式电动汽车搭载的增程器通常是由传统内燃机与永磁同步发电机 通过传动轴或常闭离合器等刚性连接件直接机械连接而成,见图2。国内外厂商通过对整车道路试验数据和用户反馈的使用信息分析后得出的结论是:纯电动模式行驶时整车振动噪声均处于较低水平;增程模式下增程器正常运行时产生的振动噪声较为显著,影响车内人员驾乘感受。这是因为纯电动行驶工况下驱动电机运行时自身的动态平衡性能优秀,产生的电磁噪声和机械振动处在较低水平,此外发动机舱盖隔音棉和车内包裹性隔音材料也对这种噪声起到了良好的消除作用,因此感受到的振动噪声均处在较低水平。增程器起动后,传统内燃机运行时所产生的燃烧噪声、机械噪声、进排气噪声和风扇噪声均没有被消除,发动机曲轴旋转产生的交变力矩引发整个传统系统产生的振动会通过传动轴和机体传至发电机和增程器各悬置点上,继而传至整个车身,驾驶员会从座椅和方向盘处感受到明显的发动机振动。此外,整车控制器VMS(Vehicle Management System,VMS)根据电池电量SOC值 和车速等条件控制增程器的起动与停止,增程器发动机的起停次数相对于传统汽车发 动机明显增多。发动机起动时需要发电机产生反拖力矩辅助起动,并在0.4s内将发动机拖动至怠速转速;停机时也是由发电机先停机进而产生负载阻力矩辅助发动机停机,目的是为了加快发动机起动和停机速度,快速越过增程器共振的固有频率带,避免产生共振。即便采取这种方式,发动机起停时的振动噪声相对于正常运行时依然会比较明显,同济大学张立军教授进行了发动机冷起动条件下的振动与噪声试验,得出的结论是发动机起动时的噪声和振动与气缸压力波的关系不大,可能与拖动电机的转矩波动及发动机曲轴活塞连杆机构的摩擦冲击有关,需要深入研究混合动力驱动电机与发动机在起动阶段的耦合振动与噪声问题。可见,对于起停次数相对传统发动机明显增多的增程器而言,系统频繁起停时振动和噪声亦不可忽视。
目前有关增程器振动噪声控制的研究主要集中在:传统发动机、发电机减振降噪技术在增程器上应用;增程器布置形式优化、添加声学包裹、悬置点结构优化以及在整车控制层面上的运行策略优化三个方面,如图4所示。
图4 增程式电动汽车运行模式
(1)传统发动机、发电机振动噪声控制手段的应用。发动机正常工作时振动噪声的控制主要包括降低燃烧噪声,降低排气噪声和降低冷却风扇噪声和降低活塞、飞轮、正时齿轮、配气机构等旋转零部件运转产生的机械振动和噪声等。常州工学院的廖连莹、彭京旗对混合动力汽车减振降噪技术进行了分析,提出了采用低噪声的结构形式和传动形式,提高关键零部件加工质量和装配精度,振动表面加贴黏弹性材料吸收振动能量等方法降低发动机振动噪声。南昌大学的熊建强、黄菊花在分析驱动电机和发电机的振动噪声特点之后提出了如合理设计爪极,选择适当气隙磁密,选择合适槽配合等措施减少电磁噪声;优化转子、定子形状和优化永磁体形状和布置形式以 减少电机的扭矩波动;优化转子、定子、驱动桥壳体的共振频率,提高驱动桥壳体刚 度等措施改进电机振动特性。发动机起动和停机时的振动噪声控制手段主要有:①采用电子控制技术,推迟点火提前角,延迟进气门关闭时间,控制燃油喷射量来改善发动机的燃烧过程,从而降低振动和噪声;②发电机拖动发动机起动时,产生的振动大小与活塞初始位置紧密相关,当活塞初始位置在进气门关闭之后且接近上止点时,起动振动较小。一汽集团的林静分析丰田Prius THS-II型发动机减振机理后提出了只要在发动机熄火时,通过 控制发电机的旋转角度,把活塞停止位置控制在预定位置,能够较好地控制发动机起动时的噪声和振动;③通过提高充当起动机的发电机起动扭矩来减少传动系的扭转 共振和增程器支架共振所引发的车辆地板振动。
(2)增程器布置形式及悬置点结构优化并添加声学包裹。增程器集成了发动机、 发电机、连接轴系和控制器,质量、质心、转动惯量均产生了明显变化,造成增程器总成与相应支承悬置构成的动力学系统的固有频率和模态振型都与传统车有所不同。一汽集团技术中心的赵彤航、卢炳武、曹蕴涛等人在分析了混合动力轿车动力总成结构特点之后给出的结论是:安装增程器时应正确匹配动力总成结构模态分布,使之能适应发动机驱动、电驱动以及混合驱动等各种运转工况。此外,增程器本身质量较 大且与车身刚性连接,优化增程器的悬置系统,避免悬置系统与车架耦合,设计先进的传动系减振器可以降低车身振动同时减少嗡嗡声的产生。对于发电机产生的高频电磁噪声,还可以采取为增程器添加声学包裹的方式吸收,也能够吸收部分发动机噪声。
(3)整车运行策略优化。车辆高速行驶时,空气噪声和轮胎噪声对车内噪声的贡 献占有重要地位。同济大学钱人一教授分析德国FEV发动机公司增程器的声学开发技术手段后,提出了利用这两种噪声对增程器的噪声实施掩蔽是一项非常重要的降噪 对策。空气噪声和轮胎噪声随着车速增加而增大,因此由发动机引起的车内声压级目标值分布带应随着车速的升高而变动,图5所示即为不考虑特殊的频谱掩蔽效应的与车速有关的车内声压级目标值分布带,增程器发动机的转速和功率要根据不同的车速范围采取不同的运行策略。低速行驶时,空气噪声和轮胎噪声水平较低,此时若开启增程器,发动机噪声成为车厢内噪声主要成分,因此动力电池电量允许的情况下低速时应尽量以纯电动模式行驶;高速行驶时,空气噪声和轮胎噪声水平随车速提高而逐渐升高,合理控制发动机转速上升速率,使其随车速上升而增加,并分别在某些固定车速下对发动机转速设定限值,在增程器输出功率能够满足整车控制器VMS 功率需求的情况下始终保持发动机转速低于当前车速对应的转速限值。
图5 车内噪声声压级目标值
以上增程器振动噪声控制技术涵盖了增程器工作状态优化、零部件机械结构优化、整车运行策略优化三个方面。此外,由于增程器系统主要振动噪声源仍是发动机,从优化发动机自身运行策略角度考虑降低增程器运行时的振动噪声是主要方向。增程式电动汽车动力总成比传统内燃机汽车结构更为复杂,动力系统配备的大功率电池起到了储能作用,发电机提供行驶动力而发动机与驱动轮间无直接机械连接,工作状态不直接受负载功率需求影响,因此其控制策略的选择具有多样性,而目前对发动机运行工况控制的目标是在 满足需求功率的情况下实现发动机的最低燃油消耗。为实现燃油经济性目标,根据整车控制器VMS对增程器的需求功率和发动机万有特性图中等值油耗线确定发动机最优工况点,使其处于燃油最经济区域,如图6所示。该运行策略以单一降低燃油消耗率为目标函数,满足整车控制器需求功率的前提下选择发动机工况点,优化结果是发动机始终在最低燃油消耗率曲线附近工况运行。为解决增程器运行过程中的振动噪声问题,在发动机工况点优化选择的过程中引入降低增程器机体振动烈度和降低增程器辐射噪声声压级作为目标函数,把振动烈度、辐射噪声声压级以及燃油消耗率的降低作为目标进行多目标优化,满足VMS需求功率的前提下在万有特性图上对发动机工况点重新标定,相对单一以降低油耗率为目标的控制策略,多目标优化后的控制策略以牺牲部分燃油经济性为代价降低增程器正常运行时的机体振动和辐射噪声。
图6 降低燃油消耗率为目标的发动机工况点分布
四、乘用车增程技术未来发展趋势
4.1 增程器小型化与集成化
随着增程式电动汽车普及应用,纯电续航里程也随着电池包容量增加而提升,当前普遍纯电续航里程在200km左右,甚至有的车型已经超过300km,如搭载43.7kwh电池包的零跑C01 CLTC纯电续航达到了316km。因此增程器小型化与集成化成为了当前各车企追求的技术指标之一。首先,带来的效益就是轻量化与低能耗,对续航里程也有优化;其次,小型化增程器与大电池包互为补充,凸显增程器的辅助补能作用;再次,集成化增程器可以拓展 机舱布置空间的冗余度,比如优化的Y向空间利于配置更大轮胎并预留双叉臂悬架升级空间,同时增大前轮包络,提升转弯半径(如图7)。甚至可以在BEV架构直接改制REV车型也是得益于小型化增程器的应用。
图7 小型化增程器整车收益
基于以上收益分析,当前增程器小型化的主要技术路径为: a.发电机与电控集成化:从传统的电控、电机分体式过渡为多合一集成式发电机(如图8),由于取消了三相高压线以及相关支架、冷却管路、低压线束等,平均减重约3-5kg。进一步的,也可将控制器与发电机进一步集成,比如共用壳体、水道、铜排等。
图8 分体式与多合一发电机系统
b.发电机与发动机一体化集成:一方面取消增程器内部中间飞轮及限扭减振器机构,由发电机转子代替发动机飞轮同时转子端部与发动机曲轴直联,可降低轴向尺寸约10%,同时降本减重也十分可观,当前主要在
图9 转子直联式增程器
因此对于增程器小型化与集成化的研发,当前已逐渐摒弃发动机、发电机、控制器的独立选型及设计,也不再是传统产业与新能源产业的简单组合。更是三者之间从研发、制造、售后全价值链的重组融合,并以最低的开发代价、最合适的性能目标,来满足市场更加严酷的竞争与挑战。
4.2 增程器高效化
对于增程器高效化,其核心路径如下:a.增程专用发动机高效化:随着附件电气化、 350bar高压直喷、水冷中冷、低压EGR、DLC减摩技术的普及应用,高效发动机的热效率普遍在 41%-43%区间。后期随着绝热及稀薄燃烧技术应用,热效率可进一步提升至47%左右,但由于高投入产出比,大部分厂家目前处于前瞻预研或观望状态。b.增程专用发电机高效化:随着扁线电机、油冷技术的普遍应用,发电机系统最高效率已经超过93%,且高效区间满足双85目标(即85%效率占map 比例85%),较传统水冷扁线技术优化1-2%左右 (如图10)。
图10 圆线与扁线发电机系统效率
c.增程系统高效区间耦合:由于受物理边界限制,发动机高效中心点一般在3000-3500rpm左右,而发电机高效中心点一般在4000rpm以上,因此二者高效率中心耦合是系统效率提升的关键。当前普遍思路是:1.减小气隙,但对工艺要求更高;2.调整电磁方案,将弱磁拐点往低速区域移动,而电机高效率点一般靠近弱磁拐点;3.在电压范围内,增加绕组匝数,提升励磁性能,从而提升电机转矩输出能力,在相同工况下,反电动势越高,电流越小,有利于提升控制器的效率。d. 增程最优工况控制策略:不同于燃油车,增程式汽车工况点可以基于发电功率需求、NVH 目标在万有map最佳油耗区间进行选点,当前主流 策略为定点发电,功率跟随(如图11)。
图11 增程发动机控制策略衍变
同时行业提出了根据预测的汽车未来行驶工况进行等效燃油最小控制策略(ECMS)并进行优化拟合。比如针对不同路况与驾驶员意图进行SOC门限与整车需求功率输入值的优化调整,对所搭建的能量管理策略在整车上固化,实现最优整车能量管理路径及策略(如图12)。
图12 工况预测能量管理策略
4.3 增程器无感化
无感化一般指车辆在日常行驶过程中,增程器瞬间介入或介入后,驾乘人员不会感知到明显的振动或噪音。尤其在亏电时噪声与振动较燃油车更大,易引起客户抱怨。当前普遍认可的目标为:噪声总值增加量
图13 整车RNC控制技术原理
4.4 增程器高压化
如前所述,得益于整车纯电续航里程接近300公里以及大电池包的普遍应用,客户对于纯电使用场景占比更高,而且对电池快充的需求也更加凸显。因此,在纯电动800V高压化应用的背景下, 整车企业对于增程高压化的开发及研究成为了当前增程系统的技术制高点,其主要特点有:一方面是高压化带来1-2%系统效率的潜在提升;另一方面是系统绝缘等级升级、宽禁带功率元器件SiC 应用所带来的成本增加。这将导致REEV相对BEV 的成本优势区间降低。因此行业普遍呈观望态度或采用高压IGBT作为过渡方案,当然随着BEV 800V的批量应用,SiC的成本降低将是REEV增程器高压化应用的最佳契机。
来源:锂电百科一点号