AI 代理真的已经准备好改变我们的商业运作方式了吗?

B站影视 电影资讯 2025-03-19 00:56 1

摘要:需要明确的是,业内对 AI 代理的真正含义存在诸多争议,有人认为它正在成为另一个被过度炒作的流行语。Google 产品管理高级总监、前 GitHub 产品副总裁 Ryan Salva 在最近接受 TechCrunch 采访时表示,他开始"讨厌代理这个词",因为

当前业界正在热烈讨论一个重要问题:AI 代理是否会像 90 年代的个人电脑一样,成为企业运营的基础设施?

需要明确的是,业内对 AI 代理的真正含义存在诸多争议,有人认为它正在成为另一个被过度炒作的流行语。Google 产品管理高级总监、前 GitHub 产品副总裁 Ryan Salva 在最近接受 TechCrunch 采访时表示,他开始"讨厌代理这个词",因为"业界过度使用'代理'一词,以至于几乎失去了意义"。

不过,在基础层面上,业界似乎达成共识:与专注于大规模生成文本、图像、视频和音频的生成式 AI 不同,AI 代理旨在采取行动,能够自主决策和执行任务。

那么,AI 代理对全球企业的实际价值究竟有多大?特别是在 AI 发展面临能源消耗、学习效率和数据可靠性等挑战的情况下,这些所谓的 AI 代理是否已经准备好处理我们的商业运作方式?

AI 巨大的能源需求

科技热潮总是令人兴奋,但当热潮褪去时,真正棘手的问题就会浮现。AI 代理也不例外。事实上,AI 代理的广泛部署取决于解决与 AI 相关的日益严重的能源危机。正如我在 Forbes 的多篇文章中提到的,该行业已经在努力应对 GPU 的巨大能源需求,大型科技公司甚至在探索核能来支持 AI 发展。

Informatica 的 CEO Amit Walia 表示:"当前在 GPU 和 AI 基础设施上的大规模资本支出,让人想起过去的工业革命,基础技术重塑了经济。虽然硬件至关重要,但能源效率将成为 AI 应用的决定性因素。"

AI 模型,特别是需要实时决策的模型,需要大量的处理能力。这意味着无法优化 AI 基础设施的公司可能面临不可持续的运营成本。

更智能的学习算法需求

除了 AI 数据中心和能源消耗的基础设施问题外,AI 代理还必须具备超越传统 AI 模型的学习和适应能力。

幸运的是,强化学习正在成为这方面的关键推动力。根据 Walia 的说法,强化学习允许 AI 代理随时间改进其行为,使用真实和合成数据来模拟不同场景。

Interface.ai 的 CEO Srinivas Njay 也认同这一观点,指出强化学习 (RL) 对于执行复杂任务的 AI 代理来说是不可或缺的。

然而,虽然强化学习能够使 AI 动态改进决策,但它并非万能良药。强化学习有多个限制,包括但不限于高昂的数据和计算成本、模型决策解释性不足,以及迁移学习能力较差。

数据挑战

数据仍然是 AI 性能的基石,但同时也是 AI 代理最大的瓶颈。如果没有高质量的领域特定数据,AI 代理就无法在医疗保健、金融和客户服务等特定行业环境中有效运作。

现实检查

随着泡沫与现实的分离,在这股热潮中,现在变得更加明显的是,大多数企业还没有准备好将决策完全交给 AI 代理 - 尤其是在涉及客户关系、金融交易或战略规划等高风险场景中。

选择战略而非炒作

我们正处于可能是一场漫长变革的开始,类似于企业软件和云计算的兴起。虽然 AI 代理无疑会变得更加强大,但企业必须首先关注基础:确保数据准备就绪、提高员工的 AI 素养,并以推动可衡量的生产力提升的方式整合 AI。

坦率地说,目前还不清楚 AI 代理真正改变商业运营的核心要素何时才能就位,或者这需要多长时间。但在此之前,专注于战略性 AI 部署而不是追逐炒作的公司将是真正获益的企业。

来源:至顶网

相关推荐