摘要:现代神经生物学经历了150年的发展,科学家们认识到,人类之所以如此特殊,其根本原因在于,人类拥有一个高度发达的大脑皮质[1]。大脑皮质虽然在神经系统演化史上最晚出现,但功能上却是最为高阶。这一结构掌管着语言、意念、逻辑、抽象思维、决策和情感等高级功能,这也是人
“人何以为人?”既是一个哲学命题,又是当代自然科学的一个重大科学问题。
现代神经生物学经历了150年的发展,科学家们认识到,人类之所以如此特殊,其根本原因在于,人类拥有一个高度发达的大脑皮质[1]。大脑皮质虽然在神经系统演化史上最晚出现,但功能上却是最为高阶。这一结构掌管着语言、意念、逻辑、抽象思维、决策和情感等高级功能,这也是人类区别于其它动物的显著特征。
进一步分析显示,与地球所有陆生动物相比,人类大脑皮质内包含了数量最多的神经元,这是人类智力的物质基础。比如,人类大脑皮质中有160亿个神经元,非洲大象的大脑比人脑重三倍,其大脑皮质体积是人类的两倍,但皮质神经元的数量却只有人脑皮质的三分之一,大约56亿个,这个数目多于猕猴的17亿,少于猩猩的80亿[2、3],而我们最常用的模式动物小鼠的大脑皮质,只有1400万个神经元,不足人类的千分之一。雪貂的大脑皮质具有折叠和沟回的特征,有4000万个神经元。人们形象地将哺乳动物的大脑皮质比喻成计算机的CPU(中央处理器),而神经元就类似于CPU的基本单元。换句话说,神经元数量越多,动物就越聪明。因此,“人之所以为人”,最根本的前提就是人类大脑皮质拥有160亿个神经元。
那么,人类这160亿个大脑皮质神经元是如何发育生长出来的呢?这里有两个主要因素:第一,在我们人类大脑皮质发育过程中,拥有数量最多的神经干细胞(又叫放射胶质细胞)。神经干细胞的数量越多,就可以产生更多的子代细胞-神经元,大脑的体积也越大。这个理论又称Radial Unit Hypothesis (RUH,放射胶质单元假说),是由美国耶鲁大学Pasko Rakic教授率先提出的 [1,4,5](图一)。第二,就是人类大脑皮质神经干细胞产生神经元的时间最长。比如,小鼠大脑皮质的神经干细胞产生神经元的时间只有7天,而人类达到了130天之久[6-9]。正是这两个主要因素,确保了我们人类能够生长出陆生动物中数量最多的大脑皮质神经元。
图一:Radial Unit Hypothesis (RUH,放射胶质单元假说) 示意图。在大脑皮质发育过程中,神经干细胞在脑室生发层(VZ)的位置和数量,在很大程度上就决定了大脑皮质表面积的大小和神经元的数量 [1,4,5]。人类大脑皮质的表面积是小鼠的1000倍之多。
从最古老的生命形式到人类,生命在地球上的进化已经绵延了40亿年。最早的哺乳动物大约在2亿年前出现,而灵长类和小鼠的共同祖先,则出现在1亿年前。那么,哺乳动物在进化过程中,大脑皮质神经元的数量,从小鼠,到雪貂、猕猴、猩猩乃至人类,是如何逐渐一点点增加的?主导这一过程的基本规律和原理,及其背后的分子机制是什么,却不清楚。我们的科技蒸蒸日上、日新月异;以至于我们人类几乎是上天入地,无所不能,这都是因为我们拥有一个非凡的大脑。可是人类的大脑却不了解自己是如何进化出来的,这个问题长期困扰着科学家。但是,在我们艰难探索的过程中,有一点是可以肯定的,就是驱动大脑进化的规律,是一定存在的,而且非常符合基本逻辑,也不会太复杂,因为2亿年前就出现了哺乳动物,这个规律在那时,甚至在更早的时期,就已经开始发挥作用了;当然,这个规律也不会很简单,因为几代科学家们历经了100多年,也还没有发现这个规律。
图二:灵长类脑容量逐渐增大的演化路线清晰明了[10],同时也预示着一定有一个最基本的规律和原理主导了这一进程。
综上所述,要回答“人何以为人”或者说“人类大脑是如何进化出来的”这个重大科学问题,实际上就是要找出哺乳动物大脑在进化过程中所遵循的基本原理和规律,及其背后的细胞和分子生物学机制。正是这个机制,驱动哺乳动物在漫长的进化过程中,大脑皮质的神经干细胞数量越来越多,其产生神经元的时间也越来越长,并最终进化出了具有高级功能的人类的大脑。
令人惊喜的是,最近,我们的科研团队可能发现了这个规律。
哺乳动物大脑进化的核心机制
我们的故事主要从1亿年前开始。那个时候,地球上生活着现在小鼠、雪貂和灵长类(包括我们人类)的共同祖先(图三)。它们大脑新皮质的结构和现在哺乳动物大脑新皮质的结构非常类似,都具有六层结构。本文所讲述的内容,主要是我们团队自己的科学发现。有兴趣读者,可以参阅本文附录的一个科研汇报视频和五篇科研论文,尤其是2024年正式发表的两篇论文 [11,12](图四和图五)。
图三:从进化树上看,小鼠、雪貂和灵长类在一亿年前,具有共同的祖先。雪貂的种属分支早于小鼠。
在哺乳动物发育过程中,以小鼠为模型,在刚刚出现神经组织和大脑雏形的时候,在胚胎的最前端有一个临时结构,叫Anterior Neural Ridge (ANR,前端神经脊),随后ANR发育成为Rostral Patterning Center(RPC,前脑前端发育调控中心),这个结构表达FGF8/17/18(成纤维细胞生长因子8/17/18)。FGF和它们的受体FGFR结合之后的一个主要下游信号通路是FGF-细胞外信号调节激酶 (FGF-ERK)。FGF-ERK信号通路的功能非常强大,包括调控神经干细胞及其子代细胞的自我更新、增殖、存活、生长、代谢以及细胞命运决定和细胞分化等。RPC还决定了大脑前端体积的大小,也可以简单理解为额叶皮质的大小。额叶皮质通常被称为脑部的命令和控制中心,决策和自控等较高层次思考就在这里进行。
DNA双螺旋结构的发现者之一,诺贝尔奖获得者Francis Crick说过:“我断定,发育的关键特性在于梯度效应(gradients)”。哺乳动物大脑的RPC正是通过FGF-ERK前端浓度高,后端浓度低这个梯度效应(图四),参与了对早期发育阶段大脑不同区域的划分,这也部分决定了成年后大脑额叶、顶叶、颞叶和枕叶的位置。解剖学和组织胚胎学的专家们发现,不论是小鼠、雪貂还是人类,在大脑刚刚开始发育时,它们的大小都是一样的。因此,所有哺乳动物早期大脑皮质发育和大脑分区所遵循的基本规律和所受到的信号调控,基本上都是一致的 [13-15]。
图四:FGF-ERK信号通路和SHH信号通路在大脑皮质神经干细胞中相互抑制[11]。
(A)在大脑刚刚开始发育的时候,以小鼠为例,端脑前端的RPC表达FGF8/17/18,FGF从前向后扩散,形成了一个梯度。另一个分子SHH主要在端脑的腹侧表达,从腹侧向背侧扩散,也形成了一个梯度。(B)以人类大脑皮质发育为例,FGF-ERK信号通路诱导BMP7基因表达,BMP7促进GLI3R的形成,GLI3R抑制SHH通路,而SHH通路抑制ERK。ERK越强,导致BMP7和GLI3R就越强,从而导致SHH通路就越弱,SHH对ERK的抑制就越弱,这样ERK-BMP7-GLI3R-SHH就形成了一个正反馈(正向循环)。
随着发育的进行,灵长类大脑皮质的神经干细胞数量迅速增多,很快便与小鼠拉开了差距。那么,驱动大脑皮质神经干细胞增多的机制是什么呢?原来还是FGF-ERK信号通路起了主导作用,因为这一通路可以使神经干细胞不断地自我更新,从而使神经干细胞的数量逐渐增多,而不分化。关键问题是,从小鼠、雪貂、猕猴、猩猩到人类,随着进化,不同物种的大脑皮质的神经干细胞是如何一点点逐渐增加的?
我们的第一个重要发现是,通过基因敲除或者基因过表达的实验方法,我们发现FGF-ERK信号通路越强,神经干细胞数量就越多,大脑皮质就越大(这符合Rakic的放射胶质单元假说,RUH);FGF-ERK信号通路还诱导BMP7基因表达,BMP7促进GLI3R的形成,GLI3R抑制SHH通路 [16,17],而SHH通路在大脑皮质神经干细胞中是抑制ERK通路的。因此,ERK越强,导致BMP7和GLI3R就越强,从而导致SHH通路就越弱,进而SHH对ERK的抑制就越弱,这样ERK-BMP7-GLI3R就形成了一个正反馈(正向循环)(图四)[11]。进一步讲,大脑皮质越大, SHH信号在大脑皮质中就越弱,从而导致ERK-BMP7-GLI3R信号通路就越来越强。这样,大脑皮质中FGF-ERK-BMP7-GLI3R信号通路随着大脑皮质的不断增大而逐渐增强,呈现一个正反馈的形式(正向循环)(图四)[9]。这个发现很好地解释了,从小鼠、雪貂、猕猴、猩猩到人类,随着进化,不同物种的大脑皮质的神经干细胞为什么会越来越多。
我们的第二个重要发现是,BMP7基因具有很强大的功能[11,12]。在个体发育和种系演化过程中,由于FGF-ERK通路在大脑皮质神经干细胞中随着进化越来越强,这导致哺乳动物大脑皮质的神经干细胞越来越多地表达BMP7基因。BMP7的功能是加强神经干细胞自我更新和显著延长神经元产生的时间,并抑制神经胶质细胞的产生。最终在种系演化过程中,人类大脑皮质神经干细胞获得了高表达BMP7基因的能力,因此也就具有了长时间产生神经元的能力,从而在漫长的自然选择过程中获胜,可谓是得BMP7基因者,得天下(图五)。临床病例报道显示,BMP7基因杂合子突变的儿童普遍都有小头畸形和智力低下的征状[18]。
另外,在人类大脑皮质发育过程中,主要出现了三种放射胶质细胞,它们是位于脑室层(VZ)全长跨度的放射胶质细胞(fRG),位于脑室层的截短型放射胶质细胞(tRG)和位于外侧脑室下层(OSVZ)的外侧放射胶质细胞(oRG)(图六)[9,19-21]。人类大脑皮质放射胶质细胞(即神经干细胞)的谱系演化过程,大致如下:在大约孕期GW7-8周,神经上皮干细胞直接转化为全长放射胶质细胞,即fRG。fRG经过对称性分裂维持自我更新和增加数量,另一方面通过非对称性分裂维持自我更新, 并且产生大脑皮质深层的锥体神经元,这一过程持续10周左右。到GW16周,fRG一般直接产生tRG和oRG。tRG和oRG可以继续非对称性分裂并自我更新[19,20]。tRG开始表达EGFR,并产生具有多分化潜能的神经前体细胞(bMIPC)。这些bMIPC表达EGFR, ASCL1, OLIG1和OLIG2,可以多次分裂,随后分化成星形胶质细胞、少突胶质细胞和迁往嗅球的中间神经元 [9,22](图六)。而位于人脑皮质的OSVZ中的oRG,则继续产生皮质浅层的锥体神经元且一直维持到GW26周。因此,人类大脑皮质的发育是由VZ和OSVZ两个生发中心驱动,使得神经发生的时间长达130天,而VZ的胶质发生可同时进行而不受影响,这是人类大脑皮质神经元大规模增多的关键原因和细胞生物学机制。更重要的是,oRG维持长时间自我更新和产生神经元的分子机制,同样是受到了FGF-ERK-BMP7-GLI3R信号通路正反馈的调控[11,12]。
来源:睿健