摘要:大数定律的核心思想是,如果你重复进行同一个实验很多次,实验的平均结果会越来越接近理论上的平均值。这里有几个关键点:重复实验:指的是你多次进行同一个实验或观察。平均结果:随着实验次数的增加,你计算所有实验结果的平均值。接近理论平均值:随着实验次数的增加,这个平均
分享兴趣,传播快乐,
增长见闻,留下美好。
亲爱的您,这里是LearingYard学苑!
今天小编为您带来"概率论与数理统计的学习"
欢迎您的访问!
Share interest, spread happiness,
increase knowledge, and leave beautiful.
Dear, this is the LearingYard Academy!
Today, the editor will bring you" Learning of probability theory and mathematical statistics"
Welcome to visit!
思维导图
Mind mapping
大数定律
Large number Law
大数定律的核心思想是,如果你重复进行同一个实验很多次,实验的平均结果会越来越接近理论上的平均值。这里有几个关键点:重复实验:指的是你多次进行同一个实验或观察。平均结果:随着实验次数的增加,你计算所有实验结果的平均值。接近理论平均值:随着实验次数的增加,这个平均结果会越来越接近理论上的期望值。举个例子,如果你掷一枚公平的硬币很多次,虽然每一次的结果(正面或反面)都是随机的,但随着掷硬币次数的增加,正面出现的频率会越来越接近50%。
The core idea of the Large Number Law is that if you repeat the same experiment many times, the average result of the experiment will increasingly approach the theoretical average value. Here are a few key points:Repeated experiments: This refers to conducting the same experiment or observation multiple times.Average result: As the number of experiments increases, you calculate the average of all the experimental results.Approaching the theoretical average value: As the number of experiments increases, this average result will get closer and closer to the theoretical expected value.For example, if you toss a fair coin many times, although each outcome (heads or tails) is random, as the number of coin tosses increases, the frequency of heads appearing will get closer and closer to 50%.
中心极限定理
Central Limit Theorem
中心极限定理则告诉我们,当你从一个总体中随机抽取足够多的样本,并计算这些样本的平均值时,这些平均值的分布会接近正态分布。这里的关键点包括:随机抽取样本:从总体中随机抽取样本,并计算每个样本的某个统计量(通常是平均值)。足够多的样本:样本量需要足够大,这样中心极限定理才适用。分布接近正态分布:无论原始总体分布是什么样的,只要样本量足够大,样本平均值的分布就会接近正态分布。继续使用硬币的例子,如果你多次掷硬币,每次掷很多次(比如100次),并记录每次100次掷硬币中出现正面的平均次数,随着实验次数的增加,这些平均次数的分布会越来越像一个正态分布。
The Central Limit Theorem tells us that when you randomly sample a sufficient number of samples from a population and calculate the average of these samples, the distribution of these averages will approach a normal distribution. The key points include:Random sampling: Randomly sampling from the population and calculating a statistic (usually the mean) for each sample.Sufficient number of samples: The sample size needs to be large enough for the Central Limit Theorem to apply.Distribution approaching normal distribution: Regardless of what the original population distribution looks like, as long as the sample size is large enough, the distribution of sample means will approach a normal distribution.Continuing with the coin example, if you toss the coin multiple times, each time a large number of times (e.g., 100 times), and record the average number of heads in each set of 100 tosses, as the number of experiments increases, the distribution of these average numbers will look more and more like a normal distribution.
实际意义
Practical Significance
大数定律的实际意义:在现实生活中,大数定律可以帮助我们理解为什么长期行为是可预测的,即使单次事件是随机的。例如,保险公司能够预测未来的理赔金额,因为它们基于大量保单的数据。中心极限定理的实际意义:中心极限定理是许多统计方法的基础,因为它允许我们在不知道总体分布的情况下,对样本平均值的分布做出推断。例如,民意调查、产品质量检验等都依赖于这个定理来估计总体参数。总的来说,这两个定理都强调了样本量在统计分析中的重要性。大数定律告诉我们,随着样本量的增加,我们可以更准确地估计总体参数;而中心极限定理则告诉我们,大样本的平均值会呈现出稳定的分布形式,这使得统计推断变得更加可靠。
Practical significance of the Large Number Law: In real life, the Large Number Law helps us understand why long-term behavior is predictable, even if individual events are random. For example, insurance companies can predict future claim amounts because they base their predictions on data from a large number of policies.Practical significance of the Central Limit Theorem: The Central Limit Theorem is the foundation of many statistical methods because it allows us to infer the distribution of sample means without knowing the population distribution. For example, opinion polls, product quality inspections, and so on all rely on this theorem to estimate population parameters.Overall, both theorems emphasize the importance of sample size in statistical analysis. The Large Number Law tells us that as the sample size increases, we can estimate the population parameters more accurately; the Central Limit Theorem tells us that the average of large samples will show a stable distribution form, making statistical inference more reliable.
今天的分享就到这里了。
如果您对今天的文章有独特的想法,
让我们相约明天。
祝您今天过得开心快乐!
That's all for today's sharing.
If you have a unique idea about the article,
please leave us a message,
and let us meet tomorrow.
I wish you a nice day!
参考资料:谷歌翻译、百度、B站
来源:LearningYard学苑