摘要:作为一种高性能聚合物材料,导电水凝胶被广泛应用于运动监测、电子皮肤和储能设备等领域,这些领域都依赖于柔性材料,包括水凝胶、弹性体和复合水凝胶。然而,制备具有优异机械性能的复合水凝胶是一项巨大的挑战。本文,吉林化工学院Zijian Gao等研究人员在《ACS A
1成果简介
作为一种高性能聚合物材料,导电水凝胶被广泛应用于运动监测、电子皮肤和储能设备等领域,这些领域都依赖于柔性材料,包括水凝胶、弹性体和复合水凝胶。然而,制备具有优异机械性能的复合水凝胶是一项巨大的挑战。本文,吉林化工学院Zijian Gao等研究人员在《ACS Appl. Polym. Mater》期刊发表名为“Tough Trilayer Composite Hydrogel Inspired by Crocodile Skin Structure for Flexible Sensors”的论文,研究受鳄鱼皮结构的启发,制备了一种三层结构的导电复合水凝胶。三层分别为Ecoflex 弹性体、聚(acrylamide-2-hydroxyethyl methacrylate)(PAAm-HEMA)水凝胶和graphene/2-hydroxyethyl methacrylate (G/PHEMA) hydrogel。
弹性体 Eco 与 P(AAm-HEMA) 水凝胶之间通过光化学反应生成共价键。作为交联剂的 N,N′-亚甲基双(2-丙烯酰胺)发生化学反应后,P(AAm-HEMA) 水凝胶和 G/PHEMA 水凝胶之间也形成了共价键;这两种水凝胶之间还形成了氢键。这些物理和化学作用使各层之间牢固地结合在一起,并防止层间在外力作用下发生滑动。G/PHEMA-P(AAm-HEMA)-Eco 复合水凝胶的断裂应力和断裂伸长率分别高达2.1MPa和1305%。0.028S/m的电导率归功于G/PHEMA 水凝胶网络中石墨烯的加入。基于出色的机械性能和导电性,这种复合水凝胶被用作柔性传感器来检测人体运动信号。这些结果表明,三层 G/PHEMA-P(AAm-HEMA)-Eco 复合水凝胶是一种前景广阔的材料,为下一代柔性电子设备的创新应用铺平了道路。
2图文导读
图1.(a) G/PHEMA-P(AAm-HEMA)-Eco复合水凝胶的制备工艺及机理。(b) G/PHEMA-P(AAm-HEMA) 水凝胶、P(AAm-HEMA) 水凝胶和 G/PHEMA 水凝胶的FTIR光谱。(c) 不同 HEMA 含量的 G/PHEMA-P(AAm-HEMA) 水凝胶的 FTIR 光谱。
图2. 浸泡在不同pH溶液中的 G/PHEMA-P(AAm-HEMA)-Eco 复合水凝胶的物理图。
图3. (a, b) Interlayer shear strength of G/PHEMA hydrogel and P(AAm-HEMA) hydrogel with different contents of monomer. (c, d) Interlayer shear strength of G/PHEMA hydrogel and P(AAm-HEMA) hydrogel with different contents of solvent.
图4. (a) Fracture stress and fracture strain of G/PHEMA-P(AAm-HEMA) hydrogel with different HEMA content. (b) Toughness and modulus of G/PHEMA-P(AAm-HEMA) hydrogel with different HEMA content. (c) Fracture stress and fracture strain of G/PHEMA-P(AAm-HEMA) hydrogel with different solvent ratios. (d) Toughness and modulus of G/PHEMA-P(AAm-HEMA) hydrogel with different solvent ratios. (e) Fracture stress and fracture strain of G/PHEMA-P(AAm-HEMA)-Eco hydrogel with different HEMA content. (f) Toughness and modulus of G/PHEMA-P(AAm-HEMA)-Eco hydrogel with different HEMA content. (g) Fracture stress and fracture strain of G/PHEMA-P(AAm-HEMA)-Eco hydrogel with different solvent ratios. (h) Toughness and modulus of G/PHEMA-P(AAm-HEMA)-Eco hydrogel with different solvent ratios.
图5. (a) The water-keeping rate of the G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel in 21 days. (b) Physical diagrams of the G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel exposed to the air in 21 days.
图6. G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel acted as wire to light up light-emitting diode, (a) extinguished and (b) lit. (c) Effect of different HEMA content on conductivity of G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel. (d) Effect of different solvent ratio on the conductivity of G/PHEMA-P(AAm-HEMA)-Eco hydrogel.
图7. (a) Response time (8.21 s) and recovery time (7.32 s) of the G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel as sensor. (b) Resistivity change of G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel at different stretching rate (100 mm/min, 150 mm/min, and 200 mm/min). (c) Resistance change of the G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel at different strain. (d) ΔR/R0-time curves of the G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel at different strain (0–200%). (e) GF value of the G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel under strain of 0–200%. (f) ΔR/R0-time curves of the G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel under 100% cyclic tensile strain within 4000 s. The relative resistance change of G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel-based flexible sensors during the movement of various joints of the human body: (g) finger, (h) wrist, (i) elbow, (j) knee, and (k) ankle. (l) Comparison of the fracture stress and elongation at break of G/PHEMA-P(AAm-HEMA)-Eco composite hydrogel with other literatures.
3小结
总之,通过合成G/PHEMA水凝胶、P(AAm-HEMA) 水凝胶和弹性体 Eco,成功制备出了三层复合水凝胶。由于G/PHEMA水凝胶和P(AAm-HEMA) 水凝胶之间的共价作用,以及 P(AAm-HEMA) 水凝胶和弹性体Eco之间形成的氢键,G/PHEMA-P(AAm-HEMA)-Eco复合水凝胶在受到外力时不会产生层间滑移。在此条件下,G/PHEMA 水凝胶和 P(AAm-HEMA)水凝胶之间的剪切强度为552.6kPa。P(AAm-HEMA) 水凝胶与弹性体 Eco 之间的剪切强度为 285.6kPa。此外,G/PHEMA水凝胶、P(AAm-HEMA) 水凝胶和弹性体 Eco 在机械性能上可以互补,这是因为三层水凝胶的层间结合非常好。在所有材料中,G/PHEMA-P(AAm-HEMA)-Eco复合水凝胶具有明显的机械性能优势。G/PHEMA-P(AAm-HEMA)-Eco复合水凝胶的最佳组分断裂应力、断裂伸长率、韧性和模量分别达到 2.1MPa、1305%、15865.9 kJ/m3和0.0045 MPa。由于掺杂了导电材料石墨烯,复合水凝胶的导电率达到了0.028 S/m。基于三层结构,复合水凝胶可用作柔性传感器。作为应变传感器,它可以检测运动信号,如任意幅度的人体关节弯曲。由于G/PHEMA-P(AAm-HEMA)-Eco复合水凝胶具有优异的机械性能和导电性,因此传感信号非常稳定。因此,这项研究将为下一代可穿戴电子设备提供广阔的发展前景。
文献:
来源:材料分析与应用
来源:石墨烯联盟