研究背景非晶材料是指没有长程有序结构的固体,因其在光电电子学、催化、电池等领域的广泛应用而引起了越来越多的关注。与传统的晶体材料相比,非晶材料具有优异的性能,例如高容缺性、优异的电化学稳定性和更低的介电常数等,这使得它们在高性能电子器件、能量存储和传感器等方面表现出巨大的潜力。然而,非晶材料的复杂结构使得其表征与设计面临巨大挑战。传统的材料设计方法多集中于有序晶体结构,而非晶材料由于没有晶格对称性,难以用标准的晶体结构模型描述,这导致了其理论研究和实验合成的困难。成果简介近日,牛津大学Yuanbin Liu(一作),Volker L. Deringer、Lena Simine等携手在Nature Reviews Materials期刊上发表了题为“The amorphous state as a frontier in computational materials design”的最新观点论文。来自材料科学领域的研究团队在非晶材料的计算设计方面取得了重要进展。该团队结合人工智能(AI)和机器学习(ML)技术,通过先进的计算建模方法,成功建立了原子尺度结构与宏观功能之间的关联模型。研究人员指出,通过将物理基础建模与人工智能相结合,可以更精确地预测非晶材料的结构特性与性能。这一方法的应用不仅有效地突破了传统计算方法在模拟非晶材料时面临的瓶颈,还为非晶材料的合成与应用提供了全新的思路。在该研究中,团队成功设计了一种新的非晶电池电极材料,凭借其无序结构,表现出比传统晶体电极材料更高的容量和更优越的循环稳定性。这一成果标志着非晶功能材料的计算设计向现实应用迈出了重要的一步,为今后非晶材料的快速发现和功能化设计奠定了基础。该研究还展示了人工智能在材料设计中的潜力,预示着未来非晶材料在多个领域的广泛应用。摘要:非晶材料是指没有长程有序结构的固体,因其在光电电子学、催化、电池等领域的广泛应用而引起了越来越多的关注。与传统的晶体材料相比,非晶材料具有优异的性能,例如高容缺性、优异的电化学稳定性和更低的介电常数等,这使得它们在高性能电子器件、能量存储和传感器等方面表现出巨
来源:华算科技
免责声明:本站系转载,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本站联系,我们将在第一时间删除内容!