《科学》杂志 2024 年度突破

B站影视 2024-12-27 19:33 11

摘要:管几十年来艾滋病防治工作取得了进展,但每年仍有 100 多万人感染艾滋病毒,而疫苗仍遥不可及。但今年,全世界看到了可能成为下一个最佳选择的东西:一种注射药物,每次注射后可保护患者 6 个月。

艾滋病防治工作取得了重大进展

管几十年来艾滋病防治工作取得了进展,但每年仍有 100 多万人感染艾滋病毒,而疫苗仍遥不可及。但今年,全世界看到了可能成为下一个最佳选择的东西:一种注射药物,每次注射后可保护患者 6 个月。

6 月份,一项针对非洲青春期女孩和年轻女性的大规模疗效试验报告称,这些疫苗将 HIV 感染率降至零,疗效率高达 100%。3 个月后,一项横跨四大洲的类似试验报告称,该疫苗对与男性发生性关系的性别多元化人群的疗效率高达 99.9%,人们对这一发现的任何怀疑都烟消云散。

许多艾滋病研究人员现在希望,当将这种名为 lenacapavir 的药物用作暴露前预防 (PrEP) 时,它将有力地降低全球感染率。“如果我们能正确使用,它就有潜力,这意味着要大干一场,让它普及开来,”开普敦大学传染病专家 Linda-Gail Bekker 说,她领导了该药物制造商 Gilead Sciences 的两项疗效试验之一。

但这并不是《科学》杂志将莱那卡韦评为 2024 年度突破的唯一原因。该药物作为 PrEP 取得的巨大成功源于一项基础研究的进步:对 HIV 衣壳蛋白的结构和功能有了新的认识,而莱那卡韦正是针对该蛋白的。许多其他病毒都有自己的衣壳蛋白,这些蛋白在其遗传物质周围形成一个外壳,因此这种药物的成功提出了类似的衣壳抑制剂可以对抗其他病毒性疾病的令人兴奋的前景。

嵌合抗原受体 T 细胞(CAR-T,粉色)接近并摧毁 B 细胞。今年,CAR-T 疗法在治疗狼疮等自身免疫性疾病方面取得了重大进展。N . Burgess/ 《科学》

狼疮、硬皮病、多发性硬化症和其他自身免疫性疾病都是由免疫系统不可靠导致的,免疫系统会攻击人体自身的健康组织。现有的治疗方法(如免疫抑制药物)可以起到帮助作用,但它们并不总能阻止疾病进展,而且可能会产生严重的副作用。今年,一种新方法——嵌合抗原受体 T 细胞 (CAR-T) 疗法,在重症患者中取得了显著的改善,这可能开启了自身免疫性疾病治疗的新篇章。

CAR-T 疗法于近 15 年前首次作为血癌疗法出现(并于 2013 年被《科学》杂志评为年度重大突破)。这是一种完全不同的治疗疾病的方法:医生从患者的白细胞中分离出 T 细胞(免疫系统的哨兵)。然后,他们对这些细胞进行基因改造(通常用于寻找并摧毁免疫系统的另一个组成部分 B 细胞),并将其送回患者体内。癌性 B 细胞是某些白血病和淋巴瘤的根源,而 CAR-T 疗法可以消灭它们。

B 细胞也在自身免疫中发挥作用,特别是通过释放攻击关节、肺、肾等部位的毒性自身抗体。今年出现了一系列新的临床试验,以测试 CAR-T 疗法对抗自身免疫性疾病中 B 细胞的效力。今年 2 月,德国研究人员报告了 15 名患有狼疮、硬皮病或肌肉损伤性疾病肌炎的患者的情况,这些患者均在 4 至 29 个月前接受过 CAR-T 疗法。所有 8 名狼疮患者均处于无药物缓解期;其他一些患者仍有症状,但都已停止使用免疫抑制剂。其他已发表的成功案例包括重症肌无力和僵人综合征(一种痛苦且致残的神经系统疾病)。迄今为止,已有 30 多名患者得到成功治疗。研究人员还在理解为何工程化 T 细胞如此有效方面取得了进展——例如,他们发现其他治疗方法无法轻易到达的组织(如患者的淋巴结)中的B 细胞深度耗竭。

还有很多工作要做。科学家仍在努力了解免疫过度反应等严重副作用发生的频率,以及完全缓解的发生频率和持续时间。

詹姆斯·韦伯太空望远镜探索宇宙黎明作者:亚当·曼

詹姆斯·韦伯太空望远镜的首批图像中,早期星系因距离较远而呈现红色。NASA ;ESA;CSA;STScI

在时间的黎明,所有这些耀眼的星系都在做什么?自美国宇航局的詹姆斯·韦伯太空望远镜于 2022 年 2 月开启其巨大的观测之眼以来,这架太空望远镜在宇宙早期发现了比理论家认为的更多的明亮星系。今年,对这些星系古老光线的详细研究已经开始解释可能发生的事情。

JWST 是有史以来建造的最大、最强大的太空望远镜,也是《科学》杂志 2022 年年度突破奖的获得者。它专门用于研究宇宙诞生后的大约 10 亿年,比之前的仪器捕捉到更多的微弱红光。在最初的几个月里,该望远镜在宇宙黎明时观测到的星系候选者数量可能比预期多 1000 倍。根据它们不同寻常的亮度,研究人员估计其中一些是银河系大小的庞然大物,根据目前的星系演化理论,它们不应该能够如此迅速地生长。

一种可能性是,这些星系实际上并没有推断的那么大,只是非常明亮。例如,如果早期宇宙中的恒星形成有利于质量比太阳大数十倍或数百倍的恒星,那么包含这些恒星的星系可能会显得异常明亮。另一种假设是,早期宇宙中充斥着黑洞,它们吞噬着星际物质库,产生明亮的能量爆发,这可以解释望远镜的发现。

JWST 的结果表明,这两种过程都可能发挥着作用。光谱学将古老的光分解成其组成波长进行分析,表明早期星系含有大量气体和尘埃,包括碳和氧等重元素。这些元素只能在更早的巨星腹部形成,这些巨星在年轻时就死亡了,爆炸成为超新星,并将物质广泛散射。研究结果表明,时间黎明时的条件使巨大的恒星能够快速高效地成长。

其他光谱研究指出,巨大而活跃的黑洞是早期光辉的来源。没有人确切知道这样的野兽是如何如此迅速地出现的:在现代宇宙中,人们认为黑洞是在一颗大质量恒星耗尽生命并坍缩后形成的。但一些理论认为,在非常早期,巨大的物质团块(而不是恒星)可能在自身重量的作用下迅速坍缩,形成了这些巨大黑洞形成的种子。

RNA 农药进入田间作者:Erik Stokstad

与目前的商用杀虫剂不同,基于 RNA 干扰的杀虫剂针对的是特定的害虫。Edwin Remsberg/VWPics via AP Images

杀虫剂可能是一种钝器,在杀死害虫的同时,也会杀死无辜的物种。今年,美国环境保护署 (EPA) 批准了一种解决方案:一种针对目标基因的 RNA 杀虫剂喷雾。支持者认为,这种新的精确方法将比现有化学品更安全,并且可以对许多害虫起作用。第一种 RNA 杀虫剂产品针对的是科罗拉多马铃薯甲虫,这种甲虫已经进化出对现有化学品的抗性,每年在世界各地造成 5 亿美元的农作物损失。

Calantha 由 GreenLight Biosciences 公司发明,可以干扰甲虫特有的基因。当幼虫咀嚼被喷洒过的叶子时,RNA 会阻止一种关键蛋白质的表达,幼虫会在几天内死亡。这种机制被称为 RNA 干扰 (RNAi),是大多数细胞用来调节基因表达和抵御病毒的自然过程。

2007 年,研究人员发现双链 RNA 可以穿过昆虫的肠道内壁并有效杀死它们,此后他们试图将 RNAi 变成一种对抗树皮甲虫、蚊子和其他昆虫的武器。2023 年,一种转基因玉米品种上市,这种玉米可以自行制造 RNA 来杀死玉米根虫。GreenLight 目前正在开发另一种杀虫剂来杀死臭名昭著的蜂巢祸害——瓦螨。

研究人员现在希望利用 RNAi 杀死飞蛾和其他所谓的鳞翅目昆虫,其中包括一些最具破坏性的农作物害虫,如小菜蛾和秋粘虫。然而,与甲虫不同,鳞翅目昆虫的肠道酶可以很容易地在 RNA 伤害它们之前将其破坏。一种可能的答案是将 RNA 包装在一个微小的保护壳内,这已成为一个热门的研究领域。

昆虫和其他害虫因能快速进化出对毒素的抗性而臭名昭著,研究人员已经开始怀疑自然选择需要多长时间才能阻止 RNA 杀虫剂。实验室测试表明,如果暴露在足够高的剂量下,科罗拉多马铃薯甲虫和玉米根虫可以进化出对 RNA 的抗性。与所有试图挑战自然的发明一样,RNA 杀虫剂必须负责任地使用才能保持其优势。

细胞器的发现增加了进化的转折作者:伊丽莎白·彭尼西

在海洋藻类Braarudosphaera bigelowii中发现了一种新的细胞器,即硝基体(圆形物体,右下)。泰勒·科尔

一些细菌可以完成这一壮举,但直到今年,还没有真核生物(具有复杂细胞的生物,如植物和动物)能够“固定”大气中的氮,将其转化为氨,植物可以利用氨来制造蛋白质和其他必需分子。随着“硝化体”的发现,这种情况发生了改变。硝化体是海洋藻类细胞中独特的固氮区室。除了表明我们对细胞复杂性的进化仍知之甚少之外,这一发现和相关工作还暗示了未来农作物可能拥有硝化体,从而使它们能够自我受精。

DNA 研究表明,这种新发现的细胞器大约在 1 亿年前由海洋藻类和固氮蓝藻共同进化而来。藻类细胞吸收了这些细菌,而这些细菌最终失去了足够的基因和生化能力,因此它们只能依靠藻类生存,现在则按照藻类的时间表进行繁殖。这使得它们成为已知的少数内共生细胞器之一(这些细胞器起源于曾经独立的微生物),并被整合到其他生物体的细胞中。叶绿体使植物能够将阳光转化为能量,而线粒体是所有真核细胞的内部动力源,它们有着相似的起源故事。

研究人员开始通过研究硅藻(一种包裹二氧化硅的微小藻类)内的固氮结构来揭示硝化体前体如何在细胞中安家落户。硅藻化石表明,它们开始寄生固氮蓝藻的时间要晚得多——大约 3500 万年前。这些细菌还没有将自己的任何基因转移到宿主细胞中,这表明它们代表了硝化体进化的早期阶段,尚未被整合为细胞器。

利用这些知识来改善农业并非易事。目前,农作物从肥料或生活在豆类和其他豆科植物根部的共生固氮细菌中获取固定氮。今年的另一项发现可能为赋予更多农作物自身氮源提供线索:一种硅藻中含有的固氮细菌与活跃在豆科植物根部的固氮细菌有远亲关系。了解这种合作关系如何发挥作用可以为将硝化生物体植入农作物指明方向。

出现一种新型磁性作者Adrian Cho

在交流磁体中,相邻电子以相反的方向(颜色)旋转,但位于具有不同方向(形状)的原子级结构中。Libor Šmejkal 和 Anna Birk Hellenes

98 年来,物理学家只知道两种永磁材料。现在,他们又发现了第三种。在我们熟悉的铁磁体(例如铁)中,相邻原子上的未配对电子以相同方向旋转,从而使材料磁化,例如,使其粘在冰箱上。铬等反铁磁体的整体磁性为零,但它们拥有原子级磁性模式,相邻电子以相反方向旋转。5年前假设的新型交变磁体兼具两者的某些方面。相邻电子以相反的方式旋转,确保净磁性为零,但在更深层次上,这些材料也类似于铁磁体。今年,多个小组证明了这种分裂人格。

理论学家通过想象时间倒流会发生什么来区分这两种较老的磁性。他们设想晶体材料中能量最高的电子占据抽象空间中的三维“费米面”,该空间的轴是电子动量的分量。在反铁磁体中,旋转的电子(比如说“向上”)的费米面恰好与旋转的电子的费米面相同。时间倒流会翻转自旋。但重合的费米面看起来仍然相同,保持了所谓的时间反转对称性。

在铁磁体中,向上的电子数量多于向下的电子,并且向上的费米面较大,向下的费米面较小。时间反转和自旋以及费米面会改变位置,时间反转对称性会“破缺”,而时间反转对称性曾是铁磁体的标志。

交替磁体具有相等数量的上下电子,但材料本身结构的特殊性导致上下电子的费米面更为复杂,从而也破坏了对称性。想象两个相同的椭圆以 90° 相交。由于椭圆大小相同,因此材料没有净磁性。但如果逆转时间和自旋,椭圆就会交换方向

来源:人工智能学家

相关推荐