原创 学术头条 学术头条图|GenCast 在区域风力和热带气旋预报方面优于 ENS。尽管 GenCast 在精度与效率上实现了双重突破,但仍有进一步优化空间。例如,提高分辨率以匹配未来升级的 ENS 系统,或者通过蒸馏技术降低计算成本。此外,结合操作性数据进行微调或融入更多传统 NWP 的初始条件处理方法,亦可显著提升其实用性。AI 如何重塑气候预报未来?AI 作为“一个改善极端天气预报的更快、更便宜的替代方案”,一向在天气预报领域被寄予厚望,除了谷歌,包括华为、清华大学等在内的科技公司和高校在这一方向均取得了重大进展。2023 年 7 月,由华为云开发的盘古气象(Pangu-Weather)模型登上了 Nature,其使用 39 年的全球再分析天气数据作为训练数据,预报准确率与全球最好的数值天气预报系统 IFS 相当,且在相同的空间分辨率下比 IFS 快 10000 倍以上。同期发表在 Nature 上的另一篇论文则介绍了 NowcastNet,其出自机器学习领域泰斗、加州大学伯克利分校教授 Michael Jordan 和清华大学教授王建民领导的研究团队,该模型可以结合物理规律和深度学习,进行实时预报降水。NowcastNet 在临近预报方面表现出色,基于雷达观测数据,可以做到提前 3 小时对 2048 km × 2048 km 的区域进行高分辨降水预报。2023 年 11 月,Google DeepMind 推出了一款基于机器学习的天气预报模型——GraphCast,在全球 0.25° 的分辨率下,该模型可以在一分钟内预报未来 10 天的数百个天气变量,显著优于传统气象预报方法,同时在预报极端事件方面表现良好。相关研究论文已发表在权威科学期刊 Science 上。2024 年 3 月,Google Research 洪水预报团队开发了一种 AI 模型,其利用 5680 个测量仪数据训练,可在 7 天内预报未测量流域的日径流。该模型在同日预报和 5 年一遇极端天气事件的预报中,表现优于当时领先的全球洪水预警系统 GloFAS。相关研究论文已发表在权威科学期刊 Nature 上。2024 年 7 月,Google Research 团队及其合作者推出了一款天气预报和气候模拟模型 NeuralGCM,在 1-15 天短期天气预报中的准确率媲美 ECMWF 模型,并在气旋预报和轨迹模拟上表现优于现有模型。加入海平面温度后,该模型的 40 年气候预报结果与全球变暖趋势高度一致。且 NeuralGCM 可以在 30 秒计算时间内生成 22.8 天大气模拟。相关研究论文已发表在权威科学期刊 Nature 上。相信在不久的将来,AI 驱动的天气预报将以更快的速度与更高的准确率在灾害预警、能源规划和气候适应等方面发挥更大的作用,为人类应对日益复杂的气候挑战提供更强大的工具。论文链接:https://www.nature.com/articles/s41586-024-08252-9作者:阮文韵如需转载或投稿,请直接在公众号内留言摘要:图|GenCast 在区域风力和热带气旋预报方面优于 ENS。尽管 GenCast 在精度与效率上实现了双重突破,但仍有进一步优化空间。例如,提高分辨率以匹配未来升级的 ENS 系统,或者通过蒸馏技术降低计算成本。此外,结合操作性数据进行微调或融入更多传统 N
来源:小唐看科技
免责声明:本站系转载,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本站联系,我们将在第一时间删除内容!