摘要:要实现Python中的打架行为识别,可以使用深度学习技术结合视频分析。以下是分步指南及代码示例:
要实现Python中的打架行为识别,可以使用深度学习技术结合视频分析。以下是分步指南及代码示例:
一、技术路线
行为识别模型:使用3D CNN或Two-Stream网络处理时空特征姿态估计辅助:结合OpenPose检测剧烈肢体动作光流分析:捕捉快速运动特征二、代码实现(使用PyTorch + OpenCV)
python
import cv2
import torch
import numpy as np
from torchvision import transforms
from models import i3d # 需要自定义或使用预训练模型
# 1. 加载预训练模型
model = i3d.InceptionI3d(400, in_channels=3)
model.load_state_dict(torch.load('i3d_pretrained.pth'))
model.eval
# 2. 视频预处理
def preprocess_frame(frame):
transform = transforms.Compose([
transforms.ToPILImage,
transforms.Resize((224, 224)),
transforms.ToTensor,
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
return transform(frame)
# 3. 滑动窗口检测
def detect_fight(video_path, window_size=16):
cap = cv2.VideoCapture(video_path)
frames =
predictions =
while cap.isOpened:
ret, frame = cap.read
if not ret:
break
# 预处理并收集帧
processed = preprocess_frame(frame)
frames.append(processed)
# 达到窗口大小时进行预测
if len(frames) == window_size:
clip = torch.stack(frames).permute(1, 0, 2, 3)
with torch.no_grad:
outputs = model(clip)
prob = torch.nn.functional.softmax(outputs, dim=1)
predictions.append(prob[0][1].item) # 假设索引1是打架类别
frames = # 重置窗口
cap.release
return predictions
# 4. 后处理(示例:简单阈值法)
def post_process(predictions, threshold=0.7):
return [1 if p > threshold else 0 for p in predictions]
# 使用示例
predictions = detect_fight("test_video.mp4")
results = post_process(predictions)
print("检测到打架的窗口:", [i for i, x in enumerate(results) if x == 1])
三、关键改进点
多模态融合:python
# 结合rgb和光流特征
rgb_stream = model_rgb(clip_rgb)
flow_stream = model_flow(clip_flow)
combined = 0.6 * rgb_stream + 0.4 * flow_stream
实时优化:使用MobileNetV3+3D轻量级结构多线程处理:分离视频捕获和模型推理线程姿态分析增强:python
import openpose # 需要OpenPose库
op = openpose.OpenPose
def analyze_pose(frame):
poses = op.detect(frame)
violence_score = 0
for pose in poses:
# 计算肢体速度/角度异常
speed = calculate_limb_speed(pose)
if speed > THRESHOLD:
violence_score += 1
return violence_score
四、训练建议
数据集:正样本:RWF-2000、Surveillance Fight Dataset负样本:HMDB51中的日常活动数据增强:python
train_transform = transforms.Compose([
RandomTemporalShift(max_shift=8),
RandomSpatialCrop,
ColorJitterHLS
])
损失函数:python
class FocalLoss(nn.Module):
def __init__(self, alpha=0.25, gamma=2):
super.__init__
self.alpha = alpha
self.gamma = gamma
def forward(self, inputs, targets):
BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')
pt = torch.exp(-BCE_loss)
loss = self.alpha * (1-pt)**self.gamma * BCE_loss
return loss.mean
五、部署优化
python
# 使用知识蒸馏
teacher_model = load_pretrained_i3d
student_model = MobileNet3D
distill_loss = KLDivLoss
bash
trtexec --onnx=model.onnx --saveEngine=model.engine --fp16
六、评估指标
推荐使用:
时序AP(Average Precision)误报率(False Alarm/Hour)检测延迟完整实现需要:
准备标注数据集调整模型参数进行多场景测试建议从预训练模型开始微调,逐步加入领域特定数据。实际部署时需考虑光照变化、遮挡等现实因素。
来源:老客数据一点号