import heapqfrom collections import defaultdictdef minimal_cost_to_win:import sys# 读取第一行获取nn = int(sys.stdin.readline)voters = # 读取接下来的n行for _ in range(n):line = sys.stdin.readlineai, bi = map(int, line.split)voters.append((ai, bi))# 统计票数vote_count = defaultdict(int)for ai, bi in voters:vote_count[ai] += 1my_votes = vote_count.get(0, 0)others = [v for k, v in vote_count.items if k != 0]max_other = max(others) if others else 0if my_votes > max_other:print(0)return# 按候选人分组存储收买费用candidate_bribes = defaultdict(list)for ai, bi in voters:if ai != 0:candidate_bribes[ai].append(bi)# 对每个候选人的收买费用排序for ai in candidate_bribes:candidate_bribes[ai].sort# 使用最小堆选择最优收买方案heap = for ai in candidate_bribes:for b in candidate_bribes[ai]:heapq.heappush(heap, (b, ai))cost = 0current_my_votes = my_votescurrent_max_other = max_otherwhile current_my_votes 统计初始票数:首先统计每个候选人的初始票数,包括自己的票数(ai=0的选民)。确定目标:我们需要确保自己的票数严格大于其他所有候选人的最高票数。设当前最高票数为max_votes,则我们需要至少获得max_votes + 1票。贪心策略:为了最小化花费,优先收买那些支持当前最高票数候选人且收买费用最低的选民。每次收买一个选民后,更新候选人的票数,并重新计算是否需要继续收买。优先队列:使用优先队列(最小堆)来高效地选择收买费用最低的选民。摘要:import heapqfrom collections import defaultdictdef minimal_cost_to_win:import sys# 读取第一行获取nn = int(sys.stdin.readline)voters = # 读
来源:最亮的星ab