ByteBrain x 清华 VLDB25|时序多模态大语言模型 ChatTS
近年来,多模态大语言模型(MLLM)发展迅速,并在图像、视频、音频等领域取得了突破性成果。然而,相较于这些研究较为成熟的模态,时间序列这一类型的数据与大模型结合的系统研究却较为匮乏。尽管已经有 TimeLLM 等工作尝试将LLM应用于时序任务,但这些研究大多局
近年来,多模态大语言模型(MLLM)发展迅速,并在图像、视频、音频等领域取得了突破性成果。然而,相较于这些研究较为成熟的模态,时间序列这一类型的数据与大模型结合的系统研究却较为匮乏。尽管已经有 TimeLLM 等工作尝试将LLM应用于时序任务,但这些研究大多局
该工作由字节跳动 ByteBrain 团队 × 清华大学合作完成。第一作者为清华大学三年级博士生谢哲,主要研究方向为时序多模态 LLM、异常检测和根因定位。第二作者和第三作者分别为李则言和何晓,均来自字节跳动。通讯作者分别为字节跳动研究科学家张铁赢和清华大学计