水操控晶体学,触发反应新路径!
碲(Te)基水系电化学因其多价态转换及高容量特性,成为开发高能量密度水系电池的一条颇具潜力的途径。然而,由于氧化还原动力学迟缓、Te⁴⁺物种易溶解以及储能机制存在争议,在水系环境中实现充分且稳定的高价态Te⁰/Te⁴⁺电化学过程颇具挑战性。现有的研究中,尽管从
碲(Te)基水系电化学因其多价态转换及高容量特性,成为开发高能量密度水系电池的一条颇具潜力的途径。然而,由于氧化还原动力学迟缓、Te⁴⁺物种易溶解以及储能机制存在争议,在水系环境中实现充分且稳定的高价态Te⁰/Te⁴⁺电化学过程颇具挑战性。现有的研究中,尽管从
作为横跨多个尺度的集成式材料计算模拟平台,Materials Studio在电池材料研究方面具有天然的优势。电池材料包括正负电极与电解液,其分子水平的设计同时需要量子力学与分子力学两大类方法,而MS的众多计算引擎模块恰能满足此要求。