深度解读京东云基于自然语言处理运维日志异常检测AIOps落地实践
日志在IT行业中被广泛使用,日志的异常检测对于识别系统的运行状态至关重要。解决这一问题的传统方法需要复杂的基于规则的有监督方法和大量的人工时间成本。我们提出了一种基于自然语言处理技术运维日志异常检测模型。为了提高日志模板向量的质量,我们改进特征提取,模型中使用
日志在IT行业中被广泛使用,日志的异常检测对于识别系统的运行状态至关重要。解决这一问题的传统方法需要复杂的基于规则的有监督方法和大量的人工时间成本。我们提出了一种基于自然语言处理技术运维日志异常检测模型。为了提高日志模板向量的质量,我们改进特征提取,模型中使用
n = int(input)times = [input.strip for _ in range(n)]def parse_time(time_str): parts = time_str.split(':') h = int(parts[0]) m = i