重庆医科大学附属第一医院郭宗铎团队综述远端肢体缺血后处理在脑卒中中的潜在作用机制以及临床应用价值

B站影视 2024-11-23 09:10 2

摘要:缺血处理是指对组织、器官或血管床进行可逆的、短暂且重复的缺血再灌注干预,以增强靶器官对缺血再灌注损伤的抵抗力[1-3]。根据干预部位的不同,缺血可分为原位缺血处理(situ ischemic conditioning,SIC)和远端缺血处理(remote is

撰文:朱亚军,李晓果,雷兴伟,唐流洋,文道琛,曾博,张晓枫,黄自超,郭宗铎

缺血处理是指对组织、器官或血管床进行可逆的、短暂且重复的缺血再灌注干预,以增强靶器官对缺血再灌注损伤的抵抗力[1-3]。根据干预部位的不同,缺血可分为原位缺血处理(situ ischemic conditioning,SIC)和远端缺血处理(remote ischemic conditioning,RIC)。原位缺血处理是直接在关键靶器官进行原位缺血再灌注干预,而远端缺血处理则是在远离靶器官的部位进行干预,两者均能对靶器官产生保护作用。然而,由于原位缺血处理存在加重靶器官的缺血再灌注损伤的风险,而远端缺血处理因其具备安全无创、操作简便、患者耐受性好等优势受到越来越多的关注。近年来,针对远端缺血处理激发的保护作用开展了大量动物和临床研究,主要涉及心脏、大脑和肺等多种器官[4-8],已证实远端缺血处理对靶器官具有保护作用。此外,脑卒中后远端缺血处理可以发挥神经保护作用。研究表明,远端缺血处理不仅能降低脑梗死的风险[9],还能减轻脑梗死的范围[10],从而改善脑卒中后的神经功能。目前研究认为远端缺血处理发挥神经保护的潜在机制可能与抑制神经炎症、调节免疫应答、调节细胞自噬、抑制细胞凋亡以及减轻细胞水肿有关[11-15]。然而,相关的信号通路尚未得到彻底澄清。

来自中国重庆医科大学附属第一医院郭宗铎团队在《中国神经再生研究(英文)》(Neural Regeneration Research)上发表了题为“ The potential mechanism and clinical application value of remote ischemic conditioning in stroke”的综述。文章分析了不同类型的远端缺血处理方法在动物和临床研究中的现状,对它们的神经保护作用机制以及信号通路进行了共性和差异性的总结。提出Notch1/PI3K/Akt信号通路在各类远端缺血处理的神经保护机制中参与许多细胞过程,可作为未来卒中治疗中的潜在靶点。

远端缺血处理是指在人体重要器官的远端肢体实施重复的、间歇的和短暂的缺血再灌注治疗,从而激发人体的内源性保护机制,达到保护重要器官的目的。如前所述[16],远端缺血处理可分为远端缺血预处理(remote ischemic pre-conditioning,RIPC)、远端缺血后处理(remote ischemic post-conditioning,RIPostC)和慢性远端缺血处理(chronic remote ischemic conditioning,CRIC)。在卒中发生前实施的干预称为远端缺血预处理;相反,卒中后实施的干预则称为远端缺血后处理。而进行长期重复的远端缺血处理以发挥持续保护作用的治疗策略被称为慢性远端缺血处理[16, 17](图1)。

图1 不同类型远端缺血处理的简化示意图(图源:Zhu et al., Neural Regen Res, 2025)

目前,远端缺血处理的干预位置主要在股动脉和肱动脉[18-21],且干预双侧肢体较单侧更为常见[8, 18, 22-25]。在动物研究中,典型的干预方法是以阻断10min和再灌注10 min为一个循环,共3个循环[26, 27]。然而,临床研究中更多地以阻断5 min和再灌注5 min为一个循环,共5个循环[28, 29]。动物实验中包括有创和无创的远端缺血处理两种。实施有创的远端缺血处理,首先切开动物腹股沟区域的内侧皮肤,随后钝性分离股动脉前方的肌肉,使股动脉充分暴露。最后通过夹闭/松开动脉夹实现股动脉的缺血再灌注[30, 31](图2A)。此外,无创的远端缺血处理主要是使用止血带在动物后肢的大腿根部施压,使下肢足趾颜色由红变淡,皮肤温度下降,达到阻断血流的目的,然后松解止血带实现再灌注[12, 32](图 2B)。在临床研究中,远端缺血处理实施则通过在上臂或大腿上缠绕血压计,施加超过正常血压 20mmHg 的压力来阻断肱/股动脉血流[7, 33, 34](图 2C)。

图2 动物和人类实施的远端缺血处理简化示意图(图源:Zhu et al., Neural Regen Res, 2025)

脑缺血动物模型是远端缺血处理治疗脑卒中的最主要的研究对象。目前研究报道远端缺血预处理、远端缺血后处理和慢性远端缺血处理均在脑缺血疾病发生发展过程中发挥了神经保护作用,其中以远端缺血后处理的研究最为广泛[35-38]。首先,远端缺血预处理能有效减轻脑缺血动物模型脑梗死的严重程度并改善神经功能。Nizari等[18]和Zhang等[39]均发现远端缺血预处理可以缩小脑缺血模型的脑梗死范围。此外,在有关远端缺血后处理的研究中,发现远端缺血后处理除了可减少梗死面积外[40-42],还可减轻脑水肿[43],并且认为这可能与远端缺血后处理保护血脑屏障有关。同时,远端缺血后处理还可调节外周免疫反应减轻炎症性脑损伤[37, 44],也可缓解脑血管痉挛[45, 46]。在这些研究中,最常见的干预方式是以10min为缺血再灌注的间隔时间并实施双侧肢体的干预。最后,目前有关慢性远端缺血处理在脑缺血中的研究相对较少。目前研究认为慢性远端缺血处理,不仅能有效减轻脑梗死的严重程度,还能减少神经元的死亡[47]。此外,慢性远端缺血处理的神经保护作用可能与调节脂质代谢、抗凝功能和免疫炎症反应有关[25]。

目前研究仅涉及远端缺血后处理[48, 49]和慢性远端缺血处理[50, 51]改善脑血管狭窄认知功能障碍的报道。一方面,远端缺血后处理可通过防止细胞死亡和脱髓鞘、促进脑血管重塑来改善认知功能[48],也可通过增强脑灌注和减少突触损伤来改善认知功能障碍[49]。另一方面,慢性远端缺血处理则通过促进微血管再生和扩张改善认知功能[50, 51]。目前干预时间范围从1周[49]、2周[48]、1个月到4个月[50]不等,但是寻找最佳治疗效果的最优干预时间还有待进一步研究。

与脑缺血相似,远端缺血后处理在出血性卒中后可减轻脑水肿,促进神经功能恢复[8]。此外,远端缺血后处理还能缓解蛛网膜下腔出血后脑血管痉挛[52];还加快了颅内血肿的消退[53]。

很多研究发现不同类型远端缺血处理均可改善脑缺血后脑灌注水平并减轻脑损伤。首先,脑血管扩张参与改善脑灌注。Nizari等[18]发现,远端缺血预处理可通过刺激脑血管内皮细胞扩张皮质动脉和毛细血管来减轻缺血再灌注损伤。此外,Hoda等[54]发现远端缺血后处理也能扩张脑血管,并认为这与激活内皮一氧化氮合酶,提高脑内一氧化氮水平相关。远端缺血处理还能通过促进脑血管重塑改善脑灌注水平,这主要见于远端缺血后处理和慢性远端缺血处理 的报道[47]。目前,许多研究观察到远端缺血处理干预后脑血管平滑肌细胞显著增殖和微血管形成增加[50, 51, 55]。虽然远端缺血处理增加脑灌注的具体机制尚未阐明,但可以明确的是不论是内皮细胞还是平滑肌细胞在远端缺血处理改善脑灌注方面均发挥着重要作用。

不同类型的远端缺血处理对脑卒中后的免疫系统应答具有不同的调节机制。简单来说,远端缺血后处理似乎主要调节先天性免疫,远端缺血预处理 则主要调节适应性免疫,而慢性远端缺血处理通过激活补体系统,调节体液免疫。首先,远端缺血预处理 在调节机体免疫应答方面可以通过改变T淋巴细胞和B淋巴细胞的增殖和分化发挥重要作用。一方面,远端缺血预处理可在脑卒中后通过体液免疫增加B淋巴细胞从外周向大脑的浸润,从而减轻神经炎症反应[44]。另一方面,远端缺血预处理 还可以调节T淋巴细胞分化,尤其是CD4+ T淋巴细胞和CD8+ T淋巴细胞[44, 56, 57]。但关于远端缺血预处理是否促进T淋巴细胞浸润脑组织并不明确。其次,虽然仅有一项研究证明了远端缺血后处理对T淋巴细胞和B淋巴细胞的调节作用[44],但更多的研究表明远端缺血后处理对免疫应答的调节更依赖于巨噬细胞[37, 53, 58, 59]。此外,远端缺血后处理不仅能增加血液和大脑中巨噬细胞的数量,还能促进抗炎性巨噬细胞的分化[53, 58]。最后,有关慢性远端缺血处理对脑卒中免疫应答调控的研究很少。目前只有Song等[60]发现慢性远端缺血处理可激活补体系统的经典通路,包括C3、C4b和C1等成分的上调。然而,关于慢性远端缺血处理激活补体以缓解神经炎症的详细机制还缺乏报道。

远端缺血后处理还可调节自噬[61-63]和抑制神经细胞凋亡[27, 64]。首先,远端缺血后处理可抑制细胞凋亡[65-70],其一是通过激活下游抗凋亡基因Bcl-2阻碍细胞的程序性死亡[27];其二是通过减轻内质网应激抑制凋亡[15]。另一方面,尽管远端缺血后处理可调节自噬状态,但具体作用仍不明确[71, 72]。有研究发现远端缺血后处理 通过促进Bcl-2 的磷酸化激活自噬,减少线粒体损伤并维持神经细胞的正常功能[71, 73, 74]。然而,有研究认为远端缺血后处理能抑制自噬的发生,而不会激活自噬,且过度的自噬会加重脑组织神经细胞的损伤[75]。

远端缺血后处理可促进神经和突触再生改善认知功能[49, 76, 77]。首先,远端缺血后处理通过增加神经干细胞的增殖及其向病变部位的迁移来促进神经发生[25]。其次,远端缺血后处理可抑制谷氨酸分泌并促进氨基丁酸释放以降低神经元兴奋毒性,维持突触信号传导[78]。此外,Wang等[76]还发现,远端缺血后处理能增加突触生成相关蛋白的表达以促进突触生成。

远端缺血处理的内源性保护信号通路是一个复杂多样的网络,由相互影响的各种信号通路组成。目前有研究表明,远端缺血处理可以通过Notch1将外部信号传入细胞,诱导PI3K磷酸化,并促进Akt磷酸化,激活各种下游信号元件[79-81],调控细胞生理病理过程(图3)。

图3 远端缺血处理调节Notch1/PI3K/Akt信号通路的机制示意图

首先,远端缺血处理可增加一氧化氮水平,通过上调一氧化氮合酶的表达促进血管扩张,最终改善脑灌注。Ren等[55]发现远端缺血处理诱导梗死灶周围Notch1上调,并且还有研究证明了Akt磷酸化对一氧化氮合酶调控的影响[54, 82]。其次,远端缺血处理在促进一氧化氮合酶的表达同时,增强抗凋亡基因Bcl-2的表达,并抑制促凋亡基因Bax,从而激活PI3K和Akt磷酸化抑制神经元凋亡[27]。

糖原合酶激酶3β作为PI3K/Akt信号通路的下游成分,在调节自噬、炎症和神经再生等细胞过程中发挥着关键作用[83-85]。在自噬方面远端缺血后处理通过促进Akt和糖原合酶激酶3β磷酸化激活自噬,减少白质损伤[8]。同时糖原合酶激酶3β磷酸化诱导的Bcl-2/Beclin1复合物解离是激活自噬的关键。对于促进神经再生,研究表明糖原合酶激酶3β的磷酸化还能导致环磷酸腺苷反应结合蛋白的磷酸化,而磷酸化是激活脑源性神经营养因子等基因产物的关键步骤[77, 86];这反过来又促进了神经可塑性和突触形成过程。对于抑制炎症,尽管Ramagiri等[77]发现远端缺血处理增加糖原合酶激酶3β的表达,并降低了促炎症因子水平,但其调控途径仍不清楚。在神经系统疾病中,研究发现糖原合酶激酶3β表达的增加可能会通过抑制NF-κB蛋白水平来阻碍炎症反应,同时远端缺血处理 可以阻碍NF-κB表达[87, 88]。因此,根据目前研究推测远端缺血处理可上调糖原合酶激酶3β的表达并抑制NF-κB,抑制神经炎症[26, 59, 89-91]。

临床研究针对脑缺血设计了有关远端缺血预处理、远端缺血后处理和慢性远端缺血处理的试验[92-94]。虽然一些试点研究尚未取得研究成果,但有研究都报告了远端缺血处理对脑缺血的益处[95-98]。有研究表明,远端缺血预处理可能有助于减少脑缺血的复发,这与患者内皮功能密切相关[99]。远端缺血预处理可通过扩张皮质血管改善脑灌注,并通过促进内皮细胞和平滑肌细胞的形成促进血管重塑[18, 55]。此外,目前已证实远端缺血后处理对脑缺血患者存在治疗效果。有研究表明远端缺血后处理 可提高脑缺血患者的长期神经功能评分,包括MRS、Barthel和NIHSS评分[100] [101]。此外,还有研究发现,远端缺血后处理的治疗作用与减少患者炎症水平有关[22, 102]。此外,虽然一些研究没有发现远端缺血后处理有明显的治疗效果,但它们证实了治疗过程的安全性[19, 93, 103]。慢性远端缺血处理是最近提出一种治疗方法,通过延长干预周期,可能会对脑缺血患者的长期康复带来更持续的改善。虽然目前进行的研究数量有限,但一些研究已经注意到了它的治疗效果,即增强肢体功能和认知能力的长期恢复[94, 104]。

对于明确诊断为脑血管狭窄患者,是慢性远端缺血处理的重要研究对象。长期认知功能障碍是脑血管狭窄患者面临的最大临床挑战,有研究推测,慢性远端缺血处理通过减少白质损伤来改善认知功能[105]。此外, 慢性远端缺血处理 还能显著降低脑血管狭窄患者发生缺血性脑血管事件的概率[24, 105, 106]。值得注意的是,近年来还开展了一些对烟雾病患者实施慢性远端缺血处理的研究,一方面,有研究[107]报道慢性远端缺血处理可增强烟雾病患者的脑血流量,改善缺血症状。另一方面,慢性远端缺血处理还可减缓狭窄闭塞病变的进展速度[23]。

由于出血性脑卒中(如脑出血和蛛网膜下腔出血)发病时的不可预测性,这类患者主要接受远端缺血后处理治疗[108-112]。有2项研究发现远端缺血后处理可加速脑出血患者血肿吸收,减轻脑水肿,并最终改善长期预后水平[113, 114]。对于蛛网膜下腔出血患者,少数研究报道远端缺血后处理对蛛网膜下腔出血患者具有安全性[115, 116],但其治疗效果尚未见报道,其治疗作用有待进一步探讨和明确。

综上所述,远端缺血处理在脑卒中的病理过程中确实起到了神经保护作用。不同的远端缺血处理干预方法具有不同的优缺点、应用范围和研究对象。目前研究表明远端缺血后处理具有简便、无创、安全等特点,有可能成为脑卒中治疗的主要干预方法。此外,慢性远端缺血处理是一种新的治疗方案,其在脑卒中中的潜在应用价值有待进一步探索。在远端缺血处理的神经保护机制中,Notch1/PI3K/Akt 信号通路参与了许多细胞过程,但仍有许多未知领域需要进一步研究,以寻找有效治疗靶点改善卒中患者的预后。这篇综述也存在不足:首先,文章总结了各种类型远端缺血处理的研究进展及临床应用现状,但对远端缺血处理作用机制的阐述相对浅显。其次,文章介绍了远端缺血预处理、远端缺血后处理和慢性远端缺血处理对脑卒中的神经保护作用,但没有比较和总结它们在治疗效果上的差异。第三,在远端缺血处理的信号通路方面,文章只关注了Notch1/PI3K/Akt信号通路,对该通路与其他信号通路之间的联系讨论较少。

此外,未来远端缺血处理在各类脑血管疾病中的研究可以关注以下几个方面:1)短期远端缺血处理(远端缺血后处理和远端缺血预处理)和 慢性远端缺血处理 哪种干预方法对于卒中患者更有益?2)目前研究很难解释远端缺血处理完整的机制链,而激活 Notch1/PI3K/Akt信号通路促进神经再生的内源性机制值得进一步研究。3)远端缺血处理治疗出血性脑卒中的临床研究极少,目前仅报道了对脑出血治疗效果,对 蛛网膜下腔出血并不明确。4)烟雾病患者可能出现出血或缺血并发症,关注远端缺血处理对烟雾病的神经保护作用具有很大的研究价值。

参考文献

[1] Heusch G, Bøtker HE, Przyklenk K, et al. Remote ischemic conditioning. J Am Coll Cardiol. 2015;65(2):177-195.

[2] Frumkin K, Bloom AS. Ischemic conditioning: implications for emergency medicine. Ann Emerg Med. 2016;68(3):268-274.

[3] Jin Z, Wu J, Yan LJ. Chemical conditioning as an approach to ischemic stroke tolerance: mitochondria as the target. Int J Mol Sci. 2016;17(3):351.

[4] Saccaro LF, Aimo A, Emdin M, et al. Remote ischemic conditioning in ischemic stroke and myocardial infarction: similarities and differences. Front Neurol. 2021;12:716316.

[5] Incognito AV, Millar PJ, Pyle WG. Remote ischemic conditioning for acute respiratory distress syndrome in COVID-19. Am J Physiol Lung Cell Mol Physiol. 2021;320(3):L331-l338.

[6] Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015;116(4):674-699.

[7] Heiberger CJ, Mehta T, Kim J, et al. Remote ischemic conditioning: the brain's endogenous defense against stroke. Neural Regen Res. 2020;15(12):2249-2250.

[8] Hu X, Lv T, Yang SF, et al. Limb remote ischemic postconditioning reduces injury and improves longterm behavioral recovery in rats following subarachnoid hemorrhage: Possible involvement of the autophagic process. Mol Med Rep. 2018;17(1):21-30.

[9] Meng R, Asmaro K, Meng L, et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012;79(18):1853-1861.

[10] Li S, Hu X, Zhang M, et al. Remote ischemic post-conditioning improves neurological function by AQP4 down-regulation in astrocytes. Behav Brain Res. 2015;289:1-8.

[11] Esposito E, Hayakawa K, Ahn BJ, et al. Effects of ischemic post-conditioning on neuronal VEGF regulation and microglial polarization in a rat model of focal cerebral ischemia. J Neurochem. 2018;146(2):160-172.

[12] Li J, Hu XS, Zhou FF, et al. Limb remote ischemic postconditioning protects integrity of the blood-brain barrier after stroke. Neural Regen Res. 2018;13(9):1585-1593.

[13] Wang H, Zhang Q, Xu Y, et al. Remote ischemic conditioning improves cognitive function during cerebral vascular injury through the induction of autophagy. Curr Neurovasc Res. 2017;14(3):250-257.

[14] Chen G, Ye X, Zhang J, et al. Limb remote ischemic postconditioning reduces ischemia-reperfusion injury by inhibiting NADPH oxidase activation and MyD88-TRAF6-P38MAP-kinase pathway of neutrophils. Int J Mol Sci. 2016;17(12):1971.

[15] Liu X, Zhao S, Liu F, et al. Remote ischemic postconditioning alleviates cerebral ischemic injury by attenuating endoplasmic reticulum stress-mediated apoptosis. Transl Stroke Res. 2014;5(6):692-700.

[16] Keevil H, Phillips BE, England TJ. Remote ischemic conditioning for stroke: A critical systematic review. Int J Stroke. 2023:17474930231191082.

[17] Kan X, Yan Z, Wang F, et al. Efficacy and safety of remote ischemic conditioning for acute ischemic stroke: A comprehensive meta-analysis from randomized controlled trials. CNS Neurosci Ther. 2023;29(9):2445-2456.

[18] Nizari S, Basalay M, Chapman P, et al. Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res Cardiol. 2021;116(1):32.

[19] Tong Y, Lee H, Kohls W, et al. Remote ischemic conditioning (RIC) with exercise (RICE) is safe and feasible for acute ischemic stroke (AIS) patients. Front Neurol. 2022;13:981498.

[20] Ishizuka K, Hoshino T, Toi S, et al. Remote ischemic conditioning for acute ischemic stroke part 2: Study protocol for a randomized controlled trial. Front Neurol. 2022;13:946431.

[21] Sun YY, Zhu HJ, Zhao RY, et al. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice. Redox Biol. 2023;66:102852.

[22] Zhang B, Zhao W, Ma H, et al. Remote ischemic conditioning in the prevention for stroke-associated pneumonia: a pilot randomized controlled trial. Front Neurol. 2021;12:723342.

[23] Xu J, Zhang Q, Rajah GB, et al. Daily remote ischemic conditioning can improve cerebral perfusion and slow arterial progression of adult moyamoya disease-a randomized controlled study. Front Neurol. 2021;12:811854.

[24] Liu S, Gao Z, Meng R, et al. Preventing ischemic cerebrovascular events in high-risk patients with non-disabling ischemic cerebrovascular events using remote ischemic conditioning: a single-arm study. Front Neurol. 2021;12:748916.

[25] Li S, Yang Y, Li N, et al. Limb Remote ischemic conditioning promotes neurogenesis after cerebral ischemia by modulating miR-449b/Notch1 pathway in mice. Biomolecules. 2022;12(8):1137.

[26] Lv J, Yan W, Zhou J, et al. Per- and post-remote ischemic conditioning attenuates ischemic brain injury via inhibition of the TLR4/MyD88 signaling pathway in aged rats. Exp Brain Res. 2021;239(8):2561-2567.

[27] Peng B, Guo QL, He ZJ, et al. Remote ischemic postconditioning protects the brain from global cerebral ischemia/reperfusion injury by up-regulating endothelial nitric oxide synthase through the PI3K/Akt pathway. Brain Res. 2012;1445:92-102.

[28] Cui Y, Chen YN, Nguyen TN, et al. Time from onset to remote ischemic conditioning and clinical outcome after acute moderate ischemic stroke. Ann Neurol. 2023;94(3):561-571.

[29] Li S, Zhao W, Liu G, et al. Chronic remote ischemic conditioning for symptomatic internal carotid or middle cerebral artery occlusion: A prospective cohort study. CNS Neurosci Ther. 2022;28(9):1365-1371.

[30] Ren C, Yan Z, Wei D, et al. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 2009;1288:88-94.

[31] Sachdeva J, Dai W, Gerczuk PZ, et al. Combined remote perconditioning and postconditioning failed to attenuate infarct size and contractile dysfunction in a rat model of coronary artery occlusion. J Cardiovasc Pharmacol Ther. 2014;19(6):567-573.

[32] Cheng Z, Li L, Mo X, et al. Non-invasive remote limb ischemic postconditioning protects rats against focal cerebral ischemia by upregulating STAT3 and reducing apoptosis. Int J Mol Med. 2014;34(4):957-966.

[33] Zeng Q, Huang P, Wang Z, et al. Remote ischemic conditioning in the treatment of acute cerebral infarction: A case control study. Heliyon. 2023;9(7):e18181.

[34] Zhao W, Meng R, Ma C, et al. Safety and Efficacy of remote ischemic preconditioning in patients with severe carotid artery stenosis before carotid artery stenting: a proof-of-concept, randomized controlled trial. Circulation. 2017;135(14):1325-1335.

[35] Mcdonald MW, Dykes A, Jeffers MS, et al. Remote ischemic conditioning and stroke recovery. Neurorehabil Neural Repair. 2021;35(6):545-549.

[36] He Q, Ma Y, Fang C, et al. Remote ischemic conditioning attenuates blood-brain barrier disruption after recombinant tissue plasminogen activator treatment via reducing PDGF-CC. Pharmacol Res. 2023;187:106641.

[37] Yang J, Balkaya M, Beltran C, et al. Remote postischemic conditioning promotes stroke recovery by shifting circulating monocytes to CCR2(+) proinflammatory subset. J Neurosci. 2019;39(39):7778-7789.

[38] Cheng X, Zhao H, Yan F, et al. Limb remote ischemic post-conditioning mitigates brain recovery in a mouse model of ischemic stroke by regulating reactive astrocytic plasticity. Brain Res. 2018;1686:94-100.

[39] Zhang Y, Liu X, Yan F, et al. Protective effects of remote ischemic preconditioning in rat hindlimb on ischemia- reperfusion injury. Neural Regen Res. 2012;7(8):583-587.

[40] Hahn CD, Manlhiot C, Schmidt MR, et al. Remote ischemic per-conditioning: a novel therapy for acute stroke? Stroke. 2011;42(10):2960-2962.

[41] Kitagawa K, Saitoh M, Ishizuka K, et al. Remote limb ischemic conditioning during cerebral ischemia reduces infarct size through enhanced collateral circulation in murine focal cerebral ischemia. J Stroke Cerebrovasc Dis. 2018;27(4):831-838.

[42] Basalay MV, Wiart M, Chauveau F, et al. Neuroprotection by remote ischemic conditioning in the setting of acute ischemic stroke: a preclinical two-centre study. Sci Rep. 2020;10(1):16874.

[43] Ren C, Gao M, Dornbos D, 3rd, et al. Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury. Neurol Res. 2011;33(5):514-519.

[44] Liu C, Yang J, Zhang C, et al. Remote ischemic conditioning reduced cerebral ischemic injury by modulating inflammatory responses and ERK activity in type 2 diabetic mice. Neurochem Int. 2020;135:104690.

[45] Hoda MN, Bhatia K, Hafez SS, et al. Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl Stroke Res. 2014;5(4):484-490.

[46] Hasseldam H, Hansen-Schwartz J, Munkholm N, et al. Remote post-conditioning reduces hypoxic damage early after experimental stroke. Neurol Res. 2013;35(4):336-343.

[47] Liang D, He XB, Wang Z, et al. Remote limb ischemic postconditioning promotes motor function recovery in a rat model of ischemic stroke via the up-regulation of endogenous tissue kallikrein. CNS Neurosci Ther. 2018;24(6):519-527.

[48] Khan MB, Hoda MN, Vaibhav K, et al. Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl Stroke Res. 2015;6(1):69-77.

[49] Li N, Ren C, Li S, et al. Remote ischemic conditioning alleviates chronic cerebral hypoperfusion-induced cognitive decline and synaptic dysfunction via the miR-218a-5p/SHANK2 pathway. Prog Neurobiol. 2023;230:102514.

[50] Khan MB, Hafez S, Hoda MN, et al. Chronic remote ischemic conditioning is cerebroprotective and induces vascular remodeling in a VCID model. Transl Stroke Res. 2018;9(1):51-63.

[51] Ren C, Li N, Li S, et al. Limb ischemic conditioning improved cognitive deficits via eNOS-dependent augmentation of angiogenesis after chronic cerebral hypoperfusion in rats. Aging Dis. 2018;9(5):869-879.

[52] Koch S, De La Rua G, Farquharson D, et al. Comparing protection of remote limb with resveratrol preconditioning following rodent subarachnoid hemorrhage. Biomolecules. 2022;12(4).

[53] Vaibhav K, Braun M, Khan MB, et al. Remote ischemic post-conditioning promotes hematoma resolution via AMPK-dependent immune regulation. J Exp Med. 2018;215(10):2636-2654.

[54] Hoda MN, Siddiqui S, Herberg S, et al. Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke. 2012;43(10):2794-2799.

[55] Ren C, Li S, Wang B, et al. Limb remote ischemic conditioning increases Notch signaling activity and promotes arteriogenesis in the ischemic rat brain. Behav Brain Res. 2018;340:87-93.

[56] Liu ZJ, Chen C, Li XR, et al. Remote ischemic preconditioning-mediated neuroprotection against stroke is associated with significant alterations in peripheral immune responses. CNS Neurosci Ther. 2016;22(1):43-52.

[57] Mollet I, Martins C, Ângelo-Dias M, et al. Pilot study in human healthy volunteers on the mechanisms underlying remote ischemic conditioning (RIC) - Targeting circulating immune cells and immune-related proteins. J Neuroimmunol. 2022;367:577847.

[58] Zhang Y, Ma L, Ren C, et al. Immediate remote ischemic postconditioning reduces cerebral damage in ischemic stroke mice by enhancing leptomeningeal collateral circulation. J Cell Physiol. 2019;234(8):12637-12645.

[59] Doeppner TR, Zechmeister B, Kaltwasser B, et al. Very delayed remote ischemic post-conditioning induces sustained neurological recovery by mechanisms involving enhanced angioneurogenesis and peripheral immunosuppression reversal. Front Cell Neurosci. 2018;12:383.

[60] Song S, Guo L, Wu D, et al. Quantitative proteomic analysis of plasma after remote ischemic conditioning in a rhesus monkey ischemic stroke model. Biomolecules. 2021;11(8):1164.

[61] Ma X, Ji C. Remote ischemic conditioning: a potential treatment for chronic cerebral hypoperfusion. Eur Neurol. 2022;85(4):253-259.

[62] Rohailla S, Clarizia N, Sourour M, et al. Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS One. 2014;9(10):e111291.

[63] Zhou M, Xia ZY, Lei SQ, et al. Role of mitophagy regulated by Parkin/DJ-1 in remote ischemic postconditioning-induced mitigation of focal cerebral ischemia-reperfusion. Eur Rev Med Pharmacol Sci. 2015;19(24):4866-4871.

[64] Liu K, Cai Z, Zhang Q, et al. Determination of significant parameters in remote ischemic postconditioning for ischemic stroke in experimental models: a systematic review and meta-analysis study. CNS Neurosci Ther. 2022;28(10):1492-1508.

[65] Xing B, Chen H, Zhang M, et al. Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke. 2008;39(8):2362-2369.

[66] Xu W, Jin W, Zhang X, et al. Remote limb preconditioning generates a neuroprotective effect by modulating the extrinsic apoptotic pathway and TRAIL-receptors expression. Cell Mol Neurobiol. 2017;37(1):169-182.

[67] Sun J, Tong L, Luan Q, et al. Protective effect of delayed remote limb ischemic postconditioning: role of mitochondrial K(ATP) channels in a rat model of focal cerebral ischemic reperfusion injury. J Cereb Blood Flow Metab. 2012;32(5):851-859.

[68] Liu F, Xuan A, Chen YaN, et al. Combined effect of nerve growth factor and brain-derived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Mol Med Report. 2014;10(4):1739-1745.

[69] Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 2022;42(1):259-305.

[70] Wu MH, Huang CC, Chio CC, et al. Inhibition of peripheral TNF-α and downregulation of microglial activation by alpha-lipoic acid and etanercept protect rat brain against ischemic stroke. Mol Neurobiol. 2016;53(7):4961-4971.

[71] Zhang Y, Ma L, Yan Y, et al. cPKCγ-modulated autophagy contributes to ischemic preconditioning-induced neuroprotection in mice with ischemic stroke via mTOR-ULK1 pathway. Transl Stroke Res. 2023;14(5):790-801.

[72] Wang P, Shao BZ, Deng Z, et al. Autophagy in ischemic stroke. Prog Neurobiol. 2018;163-164:98-117.

[73] Mathew B, Chennakesavalu M, Sharma M, et al. Autophagy and post-ischemic conditioning in retinal ischemia. Autophagy. 2021;17(6):1479-1499.

[74] Qi Z, Dong W, Shi W, et al. Bcl-2 phosphorylation triggers autophagy switch and reduces mitochondrial damage in limb remote ischemic conditioned rats after ischemic stroke. Transl Stroke Res. 2015;6(3):198-206.

[75] Xie B, Gao X, Huang Y, et al. Remote ischemic postconditioning inhibits hippocampal neuronal apoptosis and mitophagy after cardiopulmonary resuscitation in Rats. Shock. 2021;55(1):74-82.

[76] Wang Y, Zhang Z, Zhang L, et al. RLIPostC protects against cerebral ischemia through improved synaptogenesis in rats. Brain Inj. 2018;32(11):1429-1436.

[77] Ramagiri S, Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/ BDNF pathway. Eur J Pharmacol. 2017;803:84-93.

[78] Defazio RA, Raval AP, Lin HW, et al. GABA synapses mediate neuroprotection after ischemic and epsilonPKC preconditioning in rat hippocampal slice cultures. J Cereb Blood Flow Metab. 2009;29(2):375-384.

[79] Mendes RD, Canté-Barrett K, Pieters R, et al. The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia. Haematologica. 2016;101(9):1010-1017.

[80] Graziani I, Eliasz S, De Marco MA, et al. Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res. 2008;68(23):9678-9685.

[81] Cheng YY, Ding YX, Bian GL, et al. Reactive astrocytes display pro-inflammatory adaptability with modulation of Notch-PI3K-AKT signaling pathway under inflammatory stimulation. Neuroscience. 2020;440:130-145.

[82] Saito M, Hoshino T, Ishizuka K, et al. Remote ischemic conditioning enhances collateral circulation through leptomeningeal anastomosis and diminishes early ischemic lesions and infarct volume in middle cerebral artery occlusion. Transl Stroke Res. 2024;15(1):41-52.

[83] Arab HH, Safar MM, Shahin NN. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced Parkinson's disease rat model. ACS Chem Neurosci. 2021;12(4):689-703.

[84] Akhtar A, Dhaliwal J, Saroj P, et al. Chromium picolinate attenuates cognitive deficit in ICV-STZ rat paradigm of sporadic Alzheimer's-like dementia via targeting neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β pathway. Inflammopharmacology. 2020;28(2):385-400.

[85] Lin J, Song T, Li C, et al. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys Acta Mol Cell Res. 2020;1867(5):118659.

[86] Wang Q, Wills M, Li F, et al. Remote ischemic conditioning with exercise (RICE) promotes functional rehabilitation following ischemic stroke. Neurol Res. 2021;43(11):874-883.

[87] Cao Q, Karthikeyan A, Dheen ST, et al. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3β) and NF-κB/p65 signalling. PLoS One. 2017;12(10):e0186764.

[88] Zhong L, Chen XF, Wang T, et al. Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med. 2017;214(3):597-607.

[89] Pearce L, Davidson SM, Yellon DM. Does remote ischaemic conditioning reduce inflammation? A focus on innate immunity and cytokine response. Basic Res Cardiol. 2021;116(1):12.

[90] Han D, Wang J, Wen L, et al. Remote limb ischemic postconditioning protects against ischemic stroke via modulating microglia/macrophage polarization in mice. J Immunol Res. 2021;2021:6688053.

[91] Zha H, Miao W, Rong W, et al. Remote ischaemic perconditioning reduces the infarct volume and improves the neurological function of acute ischaemic stroke partially through the miR-153-5p/TLR4/p65/IkBa signalling pathway. Folia Neuropathol. 2021;59(4):335-349.

[92] Hess DC, Blauenfeldt RA, Andersen G. Remote ischemic conditioning: feasible and potentially beneficial for ischemic stroke. JAMA. 2022;328(7):622-624.

[93] Che R, Zhao W, Ma Q, et al. rt-PA with remote ischemic postconditioning for acute ischemic stroke. Ann Clin Transl Neurol. 2019;6(2):364-372.

[94] Feng X, Huang L, Wang Z, et al. Efficacy of remote limb ischemic conditioning on poststroke cognitive impairment. J Integr Neurosci. 2019;18(4):377-385.

[95] Diamanti S, Beretta S, Tettamanti M, et al. Multi-center randomized phase II clinical trial on remote ischemic conditioning in acute ischemic stroke within 9 hours of onset in patients ineligible to recanalization therapies (TRICS-9): study design and protocol. Front Neurol. 2021;12:724050.

[96] Blauenfeldt RA, Hjort N, Gude MF, et al. A multicentre, randomised, sham-controlled trial on REmote iSchemic conditioning In patients with acute STroke (RESIST) - rationale and study design. Eur Stroke J. 2020;5(1):94-101.

[97] Landman T, Schoon Y, Warlé M, et al. The effect of repeated remote ischemic postconditioning on infarct size in patients with an ischemic stroke (REPOST): study protocol for a randomized clinical trial. Trials. 2019;20(1):167.

[98] Li XQ, Tao L, Zhou ZH, et al. Remote ischemic conditioning for acute moderate ischemic stroke (RICAMIS): Rationale and design. Int J Stroke. 2020;15(4):454-460.

[99] Hyngstrom AS, Nguyen JN, Wright MT, et al. Two weeks of remote ischemic conditioning improves brachial artery flow mediated dilation in chronic stroke survivors. J Appl Physiol (1985). 2020;129(6):1348-1354.

[100] Guo ZN, Abuduxukuer R, Zhang P, et al. Safety and efficacy of remote ischemic conditioning combined with endovascular thrombectomy for acute ischemic stroke due to large vessel occlusion of anterior circulation: A multicenter, randomized, parallel-controlled clinical trial (SERIC-EVT): Study protocol. Int J Stroke. 2023;18(4):484-489.

[101] England TJ, Hedstrom A, O'sullivan SE, et al. Remote ischemic conditioning after stroke trial 2: a phase IIb randomized controlled trial in hyperacute stroke. J Am Heart Assoc. 2019;8(23):e013572.

[102] Appleton JP, O'sullivan SE, Hedstrom A, et al. Blood markers in remote ischaemic conditioning for acute ischaemic stroke: data from the REmote ischaemic Conditioning After Stroke Trial. Eur J Neurol. 2021;28(4):1225-1233.

[103] Zhao W, Che R, Li S, et al. Remote ischemic conditioning for acute stroke patients treated with thrombectomy. Ann Clin Transl Neurol. 2018;5(7):850-856.

[104] Yu W, Ren C, Du J, et al. Remote ischemic conditioning for motor recovery after acute ischemic stroke. Neurologist. 2023;28(6):367-372.

[105] Wang Y, Meng R, Song H, et al. Remote ischemic conditioning may improve outcomes of patients with cerebral small-vessel disease. Stroke. 2017;48(11):3064-3072.

[106] Liu SM, Zhao WL, Song HQ, et al. Rationale and study design for a single-arm phase iia study investigating feasibility of preventing ischemic cerebrovascular events in high-risk patients with acute non-disabling ischemic cerebrovascular events using remote ischemic conditioning. Chin Med J (Engl). 2018;131(3):347-351.

[107] Ding JY, Shang SL, Sun ZS, et al. Remote ischemic conditioning for the treatment of ischemic moyamoya disease. CNS Neurosci Ther. 2020;26(5):549-557.

[108] Jarrahi A, Shah M, Ahluwalia M, et al. Pilot study of remote ischemic conditioning in acute spontaneous intracerebral hemorrhage. Front Neurosci. 2022;16:791035.

[109] Nikkola E, Laiwalla A, Ko A, et al. Remote ischemic conditioning alters methylation and expression of cell cycle genes in aneurysmal subarachnoid hemorrhage. Stroke. 2015;46(9):2445-2451.

[110] Raval RN, Small O, Magsino K, et al. Remote ischemic pre-conditioning in subarachnoid hemorrhage: a prospective pilot trial. Neurocrit Care. 2021;34(3):968-973.

[111] Xu Y, Qi M, Wang N, et al. The effect of remote ischemic conditioning on blood coagulation function and cerebral blood flow in patients with aneurysmal subarachnoid hemorrhage. Neurol Sci. 2020;41(2):335-340.

[112] Zhao W, Jiang F, Li S, et al. Safety and efficacy of remote ischemic conditioning for the treatment of intracerebral hemorrhage: a proof-of-concept randomized controlled trial. Int J Stroke. 2022;17(4):425-433.

[113] Guo ZN, Qu Y, Abuduxukuer R, et al. Safety and efficacy of remote ischemic conditioning for spontaneous intracerebral hemorrhage (SERIC-ICH): a multicenter, randomized, parallel-controlled clinical trial study design and protocol. Eur Stroke J. 2023:23969873231201712.

[114] Zhao W, Jiang F, Li S, et al. Remote ischemic conditioning for intracerebral hemorrhage (RICH-1): rationale and study protocol for a pilot open-label randomized controlled trial. Front Neurol. 2020;11:313.

[115] Gonzalez NR, Connolly M, Dusick JR, et al. Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery. 2014;75(5):590-598; discussion 598.

[116] Laiwalla AN, Ooi YC, Liou R, et al. Matched cohort analysis of the effects of limb remote ischemic conditioning in patients with aneurysmal subarachnoid hemorrhage. Transl Stroke Res. 2016;7(1):42-48.

文章来源:Zhu Y, Li X, Lei X, Tang L, Wen D, Zeng B, Zhang X, Huang Z, Guo Z (2025) The potential mechanism and clinical application value of remote ischemic conditioning in stroke. Neural Regen Res 20(6):1613-1627.

来源:中国神经再生研究杂志

相关推荐