摘要:循环状态空间模型(Recurrent state Space Models, RSSM)最初由 Danijar Hafer 等人在论文《Learning Latent Dynamics for Planning from Pixels》中提出。该模型在现代基于
循环状态空间模型(Recurrent state Space Models, RSSM)最初由 Danijar Hafer 等人在论文《Learning Latent Dynamics for Planning from Pixels》中提出。该模型在现代基于模型的强化学习(Model-Based Reinforcement Learning, MBRL)中发挥着关键作用,其主要目标是构建可靠的环境动态预测模型。通过这些学习得到的模型,智能体能够模拟未来轨迹并进行前瞻性的行为规划。
下面我们就来用一个实际案例来介绍RSSM。
环境配置是实现过程中的首要步骤。我们这里用易于使用的 Gym API。为了提高实现效率,设计了多个模块化的包装器(wrapper),用于初始化参数并将观察结果调整为指定格式。
InitialWrapper 的设计允许在不执行任何动作的情况下进行特定数量的观察,同时支持在返回观察结果之前多次重复同一动作。这种设计对于响应具有显著延迟特性的环境特别有效。
PreprocessFrame 包装器负责将观察结果转换为正确的数据类型(本文中使用 numpy 数组),并支持灰度转换功能。
class InitialWrapper(gym.Wrapper): def __init__(self, env: gym.Env, no_ops: int = 0, repeat: int = 1): super(InitialWrapper, self).__init__(env) self.repeat = repeat self.no_ops = no_ops self.op_counter = 0 def step(self, action: ActType) -> Tuple[ObsType, float, bool, bool, dict]: if self.op_counter torch.Tensor: obs = obs.astype(np.uint8) new_frame = cv.resize(obs, self.shape[:-1], interpolation=cv.INTER_AREA) if self.grayscale: new_frame = cv.cvtColor(new_frame, cv.COLOR_RGB2GRAY) new_frame = np.expand_dims(new_frame, -1) torch_frame = torch.from_numpy(new_frame).float torch_frame = torch_frame / 255.0 return torch_frame def make_env(env_name: str, new_shape: Sequence[int] = (128, 128, 3), grayscale: bool = True, **kwargs): env = gym.make(env_name, **kwargs) env = PreprocessFrame(env, new_shape, grayscale=grayscale) return envmake_env 函数用于创建一个具有指定配置参数的环境实例。
RSSM 的实现依赖于多个关键模型组件。具体来说,需要实现以下四个核心模块:
原始观察编码器(Encoder)动态模型(Dynamics Model):通过确定性状态 h 和随机状态 s 对编码观察的时间依赖性进行建模解码器(Decoder):将随机状态和确定性状态映射回原始观察空间奖励模型(Reward Model):将随机状态和确定性状态映射到奖励值RSSM 模型组件结构图。模型包含随机状态 s 和确定性状态 h。
编码器采用简单的卷积神经网络(CNN)结构,将输入图像降维到一维嵌入表示。实现中使用了 BatchNorm 来提升训练稳定性。
class EncoderCNN(nn.Module): def __init__(self, in_channels: int, embedding_dim: int = 2048, input_shape: Tuple[int, int] = (128, 128)): super(EncoderCNN, self).__init__ # 定义卷积层结构self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=3, stride=2, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) self.fc1 = nn.Linear(self._compute_conv_output((in_channels, input_shape[0], input_shape[1])), embedding_dim) # 批标准化层self.bn1 = nn.BatchNorm2d(32) self.bn2 = nn.BatchNorm2d(64) self.bn3 = nn.BatchNorm2d(128) self.bn4 = nn.BatchNorm2d(256) def _compute_conv_output(self, shape: Tuple[int, int, int]): with torch.no_grad: x = torch.randn(1, shape[0], shape[1], shape[2]) x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) return x.shape[1] * x.shape[2] * x.shape[3] def forward(self, x): x = torch.relu(self.conv1(x)) x = self.bn1(x) x = torch.relu(self.conv2(x)) x = self.bn2(x) x = torch.relu(self.conv3(x)) x = self.bn3(x) x = self.conv4(x) x = self.bn4(x) x = x.view(x.size(0), -1) x = self.fc1(x) return x解码器遵循传统自编码器架构设计,其功能是将编码后的观察结果重建回原始观察空间。
class DecoderCNN(nn.Module): def __init__(self, hidden_size: int, state_size: int, embedding_size: int, use_bn: bool = True, output_shape: Tuple[int, int] = (3, 128, 128)): super(DecoderCNN, self).__init__ self.output_shape = output_shape self.embedding_size = embedding_size # 全连接层进行特征变换self.fc1 = nn.Linear(hidden_size + state_size, embedding_size) self.fc2 = nn.Linear(embedding_size, 256 * (output_shape[1] // 16) * (output_shape[2] // 16)) # 反卷积层进行上采样self.conv1 = nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1) # ×2 self.conv2 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1) # ×2 self.conv3 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1) # ×2 self.conv4 = nn.ConvTranspose2d(32, output_shape[0], kernel_size=3, stride=2, padding=1, output_padding=1) # 批标准化层self.bn1 = nn.BatchNorm2d(128) self.bn2 = nn.BatchNorm2d(64) self.bn3 = nn.BatchNorm2d(32) self.use_bn = use_bn def forward(self, h: torch.Tensor, s: torch.Tensor): x = torch.cat([h, s], dim=-1) x = self.fc1(x) x = torch.relu(x) x = self.fc2(x) x = x.view(-1, 256, self.output_shape[1] // 16, self.output_shape[2] // 16) if self.use_bn: x = torch.relu(self.bn1(self.conv1(x))) x = torch.relu(self.bn2(self.conv2(x))) x = torch.relu(self.bn3(self.conv3(x))) else: x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = torch.relu(self.conv3(x)) x = self.conv4(x) return x奖励模型实现奖励模型采用了一个三层前馈神经网络结构,用于将随机状态 s 和确定性状态 h 映射到正态分布参数,进而通过采样获得奖励预测。
class RewardModel(nn.Module): def __init__(self, hidden_dim: int, state_dim: int): super(RewardModel, self).__init__ self.fc1 = nn.Linear(hidden_dim + state_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, 2) def forward(self, h: torch.Tensor, s: torch.Tensor): x = torch.cat([h, s], dim=-1) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x动态模型的实现动态模型是 RSSM 架构中最复杂的组件,需要同时处理先验和后验状态转移模型:
后验转移模型:在能够访问真实观察的情况下使用(主要在训练阶段),用于在给定观察和历史状态的条件下近似随机状态的后验分布。先验转移模型:用于近似先验状态分布,仅依赖于前一时刻状态,不依赖于观察。这在无法获取后验观察的推理阶段使用。这两个模型均通过单层前馈网络进行参数化,输出各自正态分布的均值和对数方差,用于状态 s 的采样。该实现采用了简单的网络结构,但可以根据需要扩展为更复杂的架构。
确定性状态采用门控循环单元(GRU)实现。其输入包括:
前一时刻的隐藏状态独热编码动作前一时刻随机状态 s(根据是否可以获取观察来选择使用后验或先验状态)这些输入信息足以让模型了解动作历史和系统状态。以下是具体实现代码:
class DynamicsModel(nn.Module): def __init__(self, hidden_dim: int, action_dim: int, state_dim: int, embedding_dim: int, RNN_layer: int = 1): super(DynamicsModel, self).__init__ self.hidden_dim = hidden_dim # 递归层实现,支持多层 GRUself.rnn = nn.ModuleList([nn.GRUCell(hidden_dim, hidden_dim) for _ in range(rnn_layer)]) # 状态动作投影层self.project_state_action = nn.Linear(action_dim + state_dim, hidden_dim) # 先验网络:输出正态分布参数self.prior = nn.Linear(hidden_dim, state_dim * 2) self.project_hidden_action = nn.Linear(hidden_dim + action_dim, hidden_dim) # 后验网络:输出正态分布参数self.posterior = nn.Linear(hidden_dim, state_dim * 2) self.project_hidden_obs = nn.Linear(hidden_dim + embedding_dim, hidden_dim) self.state_dim = state_dim self.act_fn = nn.ReLU def forward(self, prev_hidden: torch.Tensor, prev_state: torch.Tensor, actions: torch.Tensor, obs: torch.Tensor = None, dones: torch.Tensor = None): """ 动态模型的前向传播参数: prev_hidden: RNN的前一隐藏状态,形状 (batch_size, hidden_dim) prev_state: 前一随机状态,形状 (batch_size, state_dim) actions: 独热编码动作序列,形状 (sequence_length, batch_size, action_dim) obs: 编码器输出的观察嵌入,形状 (sequence_length, batch_size, embedding_dim) dones: 终止状态标志""" B, T, _ = actions.size # 用于无观察访问时的推理# 初始化存储列表hiddens_list = posterior_means_list = posterior_logvars_list = prior_means_list = prior_logvars_list = prior_states_list = posterior_states_list = # 存储初始状态hiddens_list.append(prev_hidden.unsqueeze(1)) prior_states_list.append(prev_state.unsqueeze(1)) posterior_states_list.append(prev_state.unsqueeze(1)) # 时序展开for t in range(T - 1): # 提取当前时刻状态和动作action_t = actions[:, t, :] obs_t = obs[:, t, :] if obs is not None else torch.zeros(B, self.embedding_dim, device=actions.device) state_t = posterior_states_list[-1][:, 0, :] if obs is not None else prior_states_list[-1][:, 0, :] state_t = state_t if dones is None else state_t * (1 - dones[:, t, :]) hidden_t = hiddens_list[-1][:, 0, :] # 状态动作组合state_action = torch.cat([state_t, action_t], dim=-1) state_action = self.act_fn(self.project_state_action(state_action)) # RNN 状态更新for i in range(len(self.rnn)): hidden_t = self.rnn[i](state_action, hidden_t) # 先验分布计算hidden_action = torch.cat([hidden_t, action_t], dim=-1) hidden_action = self.act_fn(self.project_hidden_action(hidden_action)) prior_params = self.prior(hidden_action) prior_mean, prior_logvar = torch.chunk(prior_params, 2, dim=-1) # 从先验分布采样prior_dist = torch.distributions.Normal(prior_mean, torch.exp(F.softplus(prior_logvar))) prior_state_t = prior_dist.rsample # 后验分布计算if obs is None: posterior_mean = prior_mean posterior_logvar = prior_logvar else: hidden_obs = torch.cat([hidden_t, obs_t], dim=-1) hidden_obs = self.act_fn(self.project_hidden_obs(hidden_obs)) posterior_params = self.posterior(hidden_obs) posterior_mean, posterior_logvar = torch.chunk(posterior_params, 2, dim=-1) # 从后验分布采样posterior_dist = torch.distributions.Normal(posterior_mean, torch.exp(F.softplus(posterior_logvar))) posterior_state_t = posterior_dist.rsample # 保存状态posterior_means_list.append(posterior_mean.unsqueeze(1)) posterior_logvars_list.append(posterior_logvar.unsqueeze(1)) prior_means_list.append(prior_mean.unsqueeze(1)) prior_logvars_list.append(prior_logvar.unsqueeze(1)) prior_states_list.append(prior_state_t.unsqueeze(1)) posterior_states_list.append(posterior_state_t.unsqueeze(1)) hiddens_list.append(hidden_t.unsqueeze(1)) # 合并时序数据hiddens = torch.cat(hiddens_list, dim=1) prior_states = torch.cat(prior_states_list, dim=1) posterior_states = torch.cat(posterior_states_list, dim=1) prior_means = torch.cat(prior_means_list, dim=1) prior_logvars = torch.cat(prior_logvars_list, dim=1) posterior_means = torch.cat(posterior_means_list, dim=1) posterior_logvars = torch.cat(posterior_logvars_list, dim=1) return hiddens, prior_states, posterior_states, prior_means, prior_logvars, posterior_means, posterior_logvars需要特别注意的是,这里的观察输入并非原始观察数据,而是经过编码器处理后的嵌入表示。这种设计能够有效降低计算复杂度并提升模型的泛化能力。
将前述组件整合为完整的 RSSM 模型。其核心是 generate_rollout 方法,负责调用动态模型并生成环境动态的潜在表示序列。对于没有历史潜在状态的情况(通常发生在轨迹开始时),该方法会进行必要的初始化。下面是完整的实现代码:
class RSSM: def __init__(self, encoder: EncoderCNN, decoder: DecoderCNN, reward_model: RewardModel, dynamics_model: nn.Module, hidden_dim: int, state_dim: int, action_dim: int, embedding_dim: int, device: str = "mps"): """ 循环状态空间模型(RSSM)实现参数:encoder: 确定性状态编码器decoder: 观察重构解码器reward_model: 奖励预测模型dynamics_model: 状态动态模型hidden_dim: RNN 隐藏层维度state_dim: 随机状态维度action_dim: 动作空间维度embedding_dim: 观察嵌入维度device: 计算设备""" super(RSSM, self).__init__ # 模型组件初始化self.dynamics = dynamics_model self.encoder = encoder self.decoder = decoder self.reward_model = reward_model # 维度参数存储self.hidden_dim = hidden_dim self.state_dim = state_dim self.action_dim = action_dim self.embedding_dim = embedding_dim # 模型迁移至指定设备self.dynamics.to(device) self.encoder.to(device) self.decoder.to(device) self.reward_model.to(device) def generate_rollout(self, actions: torch.Tensor, hiddens: torch.Tensor = None, states: torch.Tensor = None, obs: torch.Tensor = None, dones: torch.Tensor = None): """生成状态序列展开参数:actions: 动作序列hiddens: 初始隐藏状态(可选)states: 初始随机状态(可选)obs: 观察序列(可选)dones: 终止标志序列返回:完整的状态展开序列"""# 状态初始化if hiddens is None: hiddens = torch.zeros(actions.size(0), self.hidden_dim).to(actions.device) if states is None: states = torch.zeros(actions.size(0), self.state_dim).to(actions.device) # 执行动态模型展开dynamics_result = self.dynamics(hiddens, states, actions, obs, dones) hiddens, prior_states, posterior_states, prior_means, prior_logvars, posterior_means, posterior_logvars = dynamics_result return hiddens, prior_states, posterior_states, prior_means, prior_logvars, posterior_means, posterior_logvars def train(self): """启用训练模式"""self.dynamics.train self.encoder.train self.decoder.train self.reward_model.train def eval(self): """启用评估模式"""self.dynamics.eval self.encoder.eval self.decoder.eval self.reward_model.eval def encode(self, obs: torch.Tensor): """观察编码"""return self.encoder(obs) def decode(self, state: torch.Tensor): """状态解码为观察"""return self.decoder(state) def predict_reward(self, h: torch.Tensor, s: torch.Tensor): """奖励预测"""return self.reward_model(h, s) def parameters(self): """返回所有可训练参数"""return list(self.dynamics.parameters) + list(self.encoder.parameters) + \list(self.decoder.parameters) + list(self.reward_model.parameters) def save(self, path: str): """模型状态保存"""torch.save({ "dynamics": self.dynamics.state_dict, "encoder": self.encoder.state_dict, "decoder": self.decoder.state_dict, "reward_model": self.reward_model.state_dict }, path) def load(self, path: str): """模型状态加载"""checkpoint = torch.load(path) self.dynamics.load_state_dict(checkpoint["dynamics"]) self.encoder.load_state_dict(checkpoint["encoder"]) self.decoder.load_state_dict(checkpoint["decoder"]) self.reward_model.load_state_dict(checkpoint["reward_model"])这个实现提供了一个完整的 RSSM 框架,包含了模型的训练、评估、状态保存和加载等基本功能。该框架可以作为基础结构,根据具体应用场景进行扩展和优化。
训练系统设计RSSM 的训练系统主要包含两个核心组件:经验回放缓冲区(Experience Replay Buffer)和智能体(Agent)。其中,缓冲区负责存储历史经验数据用于训练,而智能体则作为环境与 RSSM 之间的接口,实现数据收集策略。
缓冲区采用循环队列结构,用于存储和管理观察、动作、奖励和终止状态等数据。通过 sample 方法可以随机采样训练序列。
class Buffer: def __init__(self, buffer_size: int, obs_shape: tuple, action_shape: tuple, device: torch.device): """经验回放缓冲区初始化参数:buffer_size: 缓冲区容量obs_shape: 观察数据维度action_shape: 动作数据维度device: 计算设备"""self.buffer_size = buffer_size self.obs_buffer = np.zeros((buffer_size, *obs_shape), dtype=np.float32) self.action_buffer = np.zeros((buffer_size, *action_shape), dtype=np.int32) self.reward_buffer = np.zeros((buffer_size, 1), dtype=np.float32) self.done_buffer = np.zeros((buffer_size, 1), dtype=np.bool_) self.device = device self.idx = 0 def add(self, obs: torch.Tensor, action: int, reward: float, done: bool): """添加单步经验数据"""self.obs_buffer[self.idx] = obs self.action_buffer[self.idx] = action self.reward_buffer[self.idx] = reward self.done_buffer[self.idx] = done self.idx = (self.idx + 1) % self.buffer_size def sample(self, batch_size: int, sequence_length: int): """随机采样经验序列参数:batch_size: 批量大小sequence_length: 序列长度返回:经验数据元组 (observations, actions, rewards, dones)"""# 随机选择序列起始位置starting_idxs = np.random.randint(0, (self.idx % self.buffer_size) - sequence_length, (batch_size,)) # 构建完整序列索引index_tensor = np.stack([np.arange(start, start + sequence_length) for start in starting_idxs]) # 提取数据序列obs_sequence = self.obs_buffer[index_tensor] action_sequence = self.action_buffer[index_tensor] reward_sequence = self.reward_buffer[index_tensor] done_sequence = self.done_buffer[index_tensor] return obs_sequence, action_sequence, reward_sequence, done_sequence def save(self, path: str): """保存缓冲区数据"""np.savez(path, obs_buffer=self.obs_buffer, action_buffer=self.action_buffer, reward_buffer=self.reward_buffer, done_buffer=self.done_buffer, idx=self.idx) def load(self, path: str): """加载缓冲区数据"""data = np.load(path) self.obs_buffer = data["obs_buffer"] self.action_buffer = data["action_buffer"] self.reward_buffer = data["reward_buffer"] self.done_buffer = data["done_buffer"] self.idx = data["idx"]智能体设计智能体实现了数据收集和规划功能。当前实现采用了简单的随机策略进行数据收集,但该框架支持扩展更复杂的策略。
class Policy(ABC): """策略基类"""@abstractmethod def __call__(self, obs): pass class RandomPolicy(Policy): """随机采样策略"""def __init__(self, env: Env): self.env = env def __call__(self, obs): return self.env.action_space.sample class Agent: def __init__(self, env: Env, rssm: RSSM, buffer_size: int = 100000, collection_policy: str = "random", device="mps"): """智能体初始化参数:env: 环境实例rssm: RSSM模型实例buffer_size: 经验缓冲区大小collection_policy: 数据收集策略类型device: 计算设备"""self.env = env # 策略选择match collection_policy: case "random": self.rollout_policy = RandomPolicy(env) case _: raise ValueError("Invalid rollout policy") self.buffer = Buffer(buffer_size, env.observation_space.shape, env.action_space.shape, device=device) self.rssm = rssm def data_collection_action(self, obs): """执行数据收集动作"""return self.rollout_policy(obs) def collect_data(self, num_steps: int): """收集训练数据参数:num_steps: 收集步数"""obs = self.env.reset done = False iterator = tqdm(range(num_steps), desc="Data Collection") for _ in iterator: action = self.data_collection_action(obs) next_obs, reward, done, _, _ = self.env.step(action) self.buffer.add(next_obs, action, reward, done) obs = next_obs if done: obs = self.env.reset def imagine_rollout(self, prev_hidden: torch.Tensor, prev_state: torch.Tensor, actions: torch.Tensor): """执行想象展开参数:prev_hidden: 前一隐藏状态prev_state: 前一随机状态actions: 动作序列返回:完整的模型输出,包括隐藏状态、先验状态、后验状态等"""hiddens, prior_states, posterior_states, prior_means, prior_logvars, \posterior_means, posterior_logvars = self.rssm.generate_rollout(actions, prev_hidden, prev_state) # 在想象阶段使用先验状态预测奖励rewards = self.rssm.predict_reward(hiddens, prior_states) return hiddens, prior_states, posterior_states, prior_means, \prior_logvars, posterior_means, posterior_logvars, rewards def plan(self, num_steps: int, prev_hidden: torch.Tensor, prev_state: torch.Tensor, actions: torch.Tensor): """执行规划参数:num_steps: 规划步数prev_hidden: 初始隐藏状态prev_state: 初始随机状态actions: 动作序列返回:规划得到的隐藏状态和先验状态序列"""hidden_states = prior_states = hiddens = prev_hidden states = prev_state for _ in range(num_steps): hiddens, states, _, _, _, _, _, _ = self.imagine_rollout(hiddens, states, actions) hidden_states.append(hiddens) prior_states.append(states) hidden_states = torch.stack(hidden_states) prior_states = torch.stack(prior_states) return hidden_states, prior_states这部分实现提供了完整的数据管理和智能体交互框架。通过经验回放缓冲区,可以高效地存储和重用历史数据;通过智能体的抽象策略接口,可以方便地扩展不同的数据收集策略。同时智能体还实现了基于模型的想象展开和规划功能,为后续的决策制定提供了基础。
训练器实现与实验训练器设计训练器是 RSSM 实现中的最后一个关键组件,负责协调模型训练过程。训练器接收 RSSM 模型、智能体、优化器等组件,并实现具体的训练逻辑。
logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", handlers=[ logging.StreamHandler, # 控制台输出logging.FileHandler("training.log", mode="w") # 文件输出] ) logger = logging.getLogger(__name__) class Trainer: def __init__(self, rssm: RSSM, agent: Agent, optimizer: torch.optim.Optimizer, device: torch.device): """训练器初始化参数:rssm: RSSM 模型实例agent: 智能体实例optimizer: 优化器实例device: 计算设备"""self.rssm = rssm self.optimizer = optimizer self.device = device self.agent = agent self.writer = SummaryWriter # tensorboard 日志记录器def train_batch(self, batch_size: int, seq_len: int, iteration: int, save_images: bool = False): """单批次训练参数:batch_size: 批量大小seq_len: 序列长度iteration: 当前迭代次数save_images: 是否保存重建图像"""# 采样训练数据obs, actions, rewards, dones = self.agent.buffer.sample(batch_size, seq_len) # 数据预处理actions = torch.tensor(actions).long.to(self.device) actions = F.one_hot(actions, self.rssm.action_dim).float obs = torch.tensor(obs, requires_grad=True).float.to(self.device) rewards = torch.tensor(rewards, requires_grad=True).float.to(self.device) dones = torch.tensor(dones).float.to(self.device) # 观察编码encoded_obs = self.rssm.encoder(obs.reshape(-1, *obs.shape[2:]).permute(0, 3, 1, 2)) encoded_obs = encoded_obs.reshape(batch_size, seq_len, -1) # 执行 RSSM 展开rollout = self.rssm.generate_rollout(actions, obs=encoded_obs, dones=dones) hiddens, prior_states, posterior_states, prior_means, prior_logvars, \posterior_means, posterior_logvars = rollout # 重构观察hiddens_reshaped = hiddens.reshape(batch_size * seq_len, -1) posterior_states_reshaped = posterior_states.reshape(batch_size * seq_len, -1) decoded_obs = self.rssm.decoder(hiddens_reshaped, posterior_states_reshaped) decoded_obs = decoded_obs.reshape(batch_size, seq_len, *obs.shape[-3:]) # 奖励预测reward_params = self.rssm.reward_model(hiddens, posterior_states) mean, logvar = torch.chunk(reward_params, 2, dim=-1) logvar = F.softplus(logvar) reward_dist = Normal(mean, torch.exp(logvar)) predicted_rewards = reward_dist.rsample # 可视化if save_images: batch_idx = np.random.randint(0, batch_size) seq_idx = np.random.randint(0, seq_len - 3) fig = self._visualize(obs, decoded_obs, rewards, predicted_rewards, batch_idx, seq_idx, iteration, grayscale=True) if not os.path.exists("reconstructions"): os.makedirs("reconstructions") fig.savefig(f"reconstructions/iteration_{iteration}.png") self.writer.add_figure("Reconstructions", fig, iteration) plt.close(fig) # 计算损失reconstruction_loss = self._reconstruction_loss(decoded_obs, obs) kl_loss = self._kl_loss(prior_means, F.softplus(prior_logvars), posterior_means, F.softplus(posterior_logvars)) reward_loss = self._reward_loss(rewards, predicted_rewards) loss = reconstruction_loss + kl_loss + reward_loss # 反向传播和优化self.optimizer.zero_grad loss.backward nn.utils.clip_grad_norm_(self.rssm.parameters, 1, norm_type=2) self.optimizer.step return loss.item, reconstruction_loss.item, kl_loss.item, reward_loss.item def train(self, iterations: int, batch_size: int, seq_len: int): """执行完整训练过程参数:iterations: 迭代总次数batch_size: 批量大小seq_len: 序列长度"""self.rssm.train iterator = tqdm(range(iterations), desc="Training", total=iterations) losses = infos = last_loss = float("inf") for i in iterator: # 执行单批次训练loss, reconstruction_loss, kl_loss, reward_loss = self.train_batch(batch_size, seq_len, i, save_images=i % 100 == 0) # 记录训练指标self.writer.add_scalar("Loss", loss, i) self.writer.add_scalar("Reconstruction Loss", reconstruction_loss, i) self.writer.add_scalar("KL Loss", kl_loss, i) self.writer.add_scalar("Reward Loss", reward_loss, i) # 保存最佳模型if loss本文详细介绍了基于 PyTorch 实现 RSSM 的完整过程。RSSM 的架构相比传统的 VAE 或 RNN 更为复杂,这主要源于其混合了随机和确定性状态的特性。通过手动实现这一架构,我们可以深入理解其背后的理论基础及其强大之处。RSSM 能够递归地生成未来潜在状态轨迹,这为智能体的行为规划提供了基础。
实现的优点在于其计算负载适中,可以在单个消费级 GPU 上进行训练,在有充足时间的情况下甚至可以在 CPU 上运行。这一工作基于论文《Learning Latent Dynamics for Planning from Pixels》,该论文为 RSSM 类动态模型奠定了基础。后续的研究工作如《Dream to Control: Learning Behaviors by Latent Imagination》进一步发展了这一架构。这些改进的架构将在未来的研究中深入探讨,因为它们对理解 MBRL 方法提供了重要的见解。
作者:Lukas Bierling
来源:deephub